

## Cahier de Vacances. Niveau III

Ce troisième cahier de vacances propose des exercices pour lesquels il est impératif d'être à l'aise avec toutes les notions vues cette année.

### 1 Algèbre Linéaire - D'après EDHEC 2012

On dit d'un endomorphisme f de  $\mathbb{R}^n$  qu'il est **diagonalisable** si il existe des réels  $\lambda_1, ..., \lambda_n$  (non nécessairement distincts) et une base  $\mathfrak{B} = \{u_1, ..., u_n\}$  de  $\mathbb{R}^n$  tels que

$$\forall i \in [1; n], \quad f(u_i) = \lambda_i u_i.$$

Ainsi, la matrice de f dans la base  $\mathfrak{B}$  est diagonale.

(1) Montrer que si un endomorphisme f de  $\mathbb{R}^n$  est diagonalisable, alors l'endomorphisme  $f^2 = f \circ f$  est encore diagonalisable. (On pourra alors expliciter les coefficients diagonaux correspondants).

Le but de l'exercice est de montrer que la réciproque est fausse. Soit donc g l'endomorphisme de  $\mathbb{R}^3$  dont la matrice dans la base canonique est notée

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 2 & -5 & 4 \\ 3 & -8 & 6 \end{pmatrix}.$$

On note I la matrice identité de  $\mathcal{M}_3(\mathbb{R})$ .

- (2) Déterminer  $A^2$  puis, montrer que  $A^4 = I$ .
- (3) (a) Soient  $\lambda \in \mathbb{R}$  et  $v \in \mathbb{R}^3$  tels que  $g(v) = \lambda v$ . En utilisant la question précédente, montrer que  $\lambda = 1$  ou que  $\lambda = -1$ .
  - (b) En déduire que si g est diagonalisable, on pourra trouver une base  $\{u_1, ..., u_p, v_1, ..., v_q\}$  de  $\mathbb{R}^n$  (avec p + q = n) telle que  $g(u_i) = u_i$  et  $g(v_j) = -v_j$ .
  - (c) Montrer aussi que, pour tous les  $u_i$  sont des éléments de Ker(g Id) et les  $v_j$  des éléments de Ker(g + Id).
- (4) Donner une base  $\{u\}$  de Ker(g Id).
- (5) Déterminer Ker(g + Id).
- (6) Montrer qu'alors, g n'est pas diagonalisable.
- (7) Résoudre l'équation AX = -X (où X est un vecteur de  $\mathbb{R}^3$ ). En déduire une base  $\{v; w\}$  de  $\operatorname{Ker}(g^2 + \operatorname{Id})$ .
- (8) Montrer que la famille  $\{u; v; w\}$  forme une base de  $\mathbb{R}^3$ .
- (9) Écrire la matrice de  $g^2$  dans la base  $\{u; v; w\}$ . Conclure.

# 2 Calcul Différentiel, Séries numériques (et probabilités discrètes) - D'après HEC 2004

Cet exercice traite de la difficulté d'intervertir les limites. En effet, une somme infinie étant une limite, on ne peut pas directement dériver sous le signe  $\Sigma$ .

On considère une variable aléatoire X sur un espace probabilisé  $(\Omega, \mathcal{A}, P)$  prenant ses valeurs sur  $\mathbb{N}^*$  et on note, pour tout  $n \in \mathbb{N}^*$ ,

$$a_n = P(X = n).$$

(1) Justifier que la suite  $(a_n)$  est une suite de nombre positifs tels que

$$\sum_{n=1}^{+\infty} a_n = 1.$$

- (2) Soit  $x \in [0; 1]$ . Montrer que la série de terme général  $a_n x^n$  est absolument convergente puis qu'elle converge.
- (3) On désigne par f la fonction définie sur [0;1] par  $f(x) = \sum_{n=1}^{+\infty} a_n x^n$ . Montrer que

$$f(1) - f(x) = \sum_{n=1}^{+\infty} a_n (1 - x^n).$$

(4) En déduire que, pour tout  $x \in [0; 1[$ ,

$$\frac{f(1) - f(x)}{1 - x} = \sum_{n=1}^{+\infty} a_n \left( \sum_{k=0}^{n-1} x - k \right).$$

 $\square$  Dans toute la suite, on suppose que f est dérivable en 1.

(5) Déduire de la question précédente que la fonction  $x \mapsto \frac{f(1) - f(x)}{1 - x}$  est croissante sur [0; 1[ puis que, pour tout  $x \in [0; 1[$ , on a

$$\frac{f(1) - f(x)}{1 - x} \le f'(1).$$

(6) Soit  $N \ge 1$  un entier. Justifier que la fonction  $x \mapsto \sum_{n=1}^{N} a_n \left( \sum_{k=0}^{n-1} x^k \right)$  est continue sur [0; 1] et que

$$\lim_{x \to 1^{-}} \sum_{n=1}^{N} a_n \left( \sum_{k=0}^{n-1} x^k \right) = \sum_{n=1}^{N} n a_n.$$

(7) Montrer que, pour tout entier  $N \ge 1$ ,

$$\sum_{n=1}^{N} a_n \left( \sum_{k=0}^{n-1} x^k \right) \le \frac{f(1) - f(x)}{1 - x}.$$

(8) Déduire des deux questions précédentes que, pour tout entier  $N \geq 1$ , on a

$$0 \le \sum_{n=1}^{N} na_n \le f'(1).$$

(9) En déduire que la série de terme général  $na_n$  est convergente.

(10) Utiliser la question précédente et la Question 4 pour montrer que, pour tout  $x \in [0;1[$ ,

$$0 \le \frac{f(1) - f(x)}{1 - x} \le \sum_{n=1}^{+\infty} na_n \le f'(1).$$

(11) Montrer que la variable aléatoire X admet une espérance donnée par

$$E(X) = f'(1).$$

### 3 Intégration - D'après EDHEC 2008

Soit f une fonction de classe  $C^1$  sur [0; 1].

(1) Montrer qu'il existe M > 0 tel que, pour tous  $x, y \in [0; 1]$ ,

$$|f(x) - f(y)| \le M|x - y|.$$

(2) En déduire que, pour tout entier  $n \ge 1$ , pour tout entier  $k \in [0; n-1]$ , et pour tout réel  $t \in \left[\frac{k}{n}; \frac{k+1}{n}\right]$ ,

$$\left| f(t) - f\left(\frac{k}{n}\right) \right| \le M\left(t - \frac{k}{n}\right).$$

(3) En intégrant l'inégalité précédente, montrer que, pour tout entier  $n \ge 1$ , pour tout entier  $k \in [0; n-1]$ ,

$$\left| \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) dt - \frac{1}{n} f\left(\frac{k}{n}\right) \right| \le \frac{M}{2n^2}.$$

(4) En déduire que, pour tout entier  $n \geq 1$ ,

$$\left| \int_0^1 f(t) dt - \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) \right| \le \frac{M}{2n}$$

puis que

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) = \int_0^1 f(t) dt.$$

(5) **Application.** Déterminer

$$\lim_{n \to +\infty} \frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n-1}}{n\sqrt{n}}$$

et

$$\lim_{n\to+\infty} n\left(\frac{1}{(n+1)^2}+\cdots+\frac{1}{(n+n)^2}\right).$$

### 4 Variables à densité - D'après HEC 2010

On admet que, si X et Y, sont deux variables aléatoires à densité indépendantes, alors V(X + Y) = V(X) + V(Y).

(1) (a) Rappeler la valeur de  $\int_0^{+\infty} e^{-t} dt$ . Établir pour tout n de  $\mathbb{N}^*$  la convergence de l'intégrale  $\int_0^{+\infty} t^n e^{-t} dt$ . On pose alors, pour tout  $n \in \mathbb{N}$ ,

$$I_n = \int_0^{+\infty} t^n e^{-t} \mathrm{d}t.$$

(b) Soit n un entier de  $\mathbb{N}^*$ . A l'aide d'une intégration par parties, établir une relation de récurrence entre  $I_n$  et  $I_{n-1}$ . En déduire la valeur de  $I_n$  en fonction de n.

Soit  $\lambda$  un réel strictement positif. Soit  $X_1$  et  $X_2$  deux variables indépendantes de même loi exponentielle de paramètre  $\lambda$ .

On pose alors

$$Y = X_1 - X_2$$
,  $T = \max(X_1, X_2)$ , et  $Z = \min(X_1, X_2)$ .

- (2) Justifier les relations  $T + Z = X_1 + X_2$  et  $T Z = |X_1 X_2| = |Y|$ .
- (3) (a) Rappeler sans démonstration les valeurs respectives de  $V(X_1)$  et de  $P([X_1 \le x])$ , pour tout réel x.
  - (b) Calculer  $E(X_1 + X_2)$ ,  $V(X_1 + X_2)$ , E(Y), V(Y).
- (4) Déterminer pour tout réel z,  $F_{Z}(z)$  et  $f_{Z}(z)$ . Reconnaître la loi de Z et en déduire E(Z) et V(Z).
- (5) (a) Montrer que pour tout réel t, on a

$$F_T(t) = \begin{cases} (1 - e^{-\lambda})^2 & \text{si } t \ge 0 \\ 0 & \text{si } t < 0 \end{cases}.$$

Exprimer pour tout réel t,  $f_T(t)$ .

- (b) Justifier l'existence de E(T) et V(T). Montrer que  $E(T) = \frac{3}{2\lambda}$  et  $V(T) = \frac{5}{4\lambda^2}$ . (On pourra utiliser des changements de variables affines.)
- (6) (a) Préciser  $Y(\Omega)$  et  $|Y|(\Omega)$ .
  - (b) Déterminer une densité de la variable aléatoire  $-X_2$ .
  - (c) Montrer que pour tout réel y, l'intégrale  $\int_{-\infty}^{+\infty} f_{X_1}(t) f_{-X_2}(y-t) dt$  est convergente et qu'elle vaut  $\frac{\lambda}{2} e^{-\lambda|y|}$ .

(on distinguera les deux cas :  $y \ge 0$  et y < 0)

- (d) Établir que la fonction  $y \mapsto \frac{\lambda}{2}e^{-\lambda|y|}$  est une densité de probabilité sur  $\mathbb{R}$ ; on admet que c'est une densité de la variable aléatoire Y.
- (e) Déterminer pour tout y réel,  $f_{|Y|}(y)$ . Reconnaître la loi de |Y| = T Z.