

Concours Blanc n°5

Exercice 1

Dans cet exercice, on note $\,^t M\,$ la transposée de la matrice M et on rappelle la formule

$$^{t}(MN) = {}^{t}N {}^{t}M.$$

Partie I

On note $\mathcal{M}_3(\mathbb{R})$ l'ensemble des matrices carrées réelles d'ordre 3 et on considère l'ensemble \mathcal{F} défini par :

$$\mathcal{F} = \left\{ \begin{pmatrix} \alpha & \beta & \gamma \\ -\alpha & 0 & 2\gamma \\ \alpha & -\beta & \gamma \end{pmatrix}, \ (\alpha, \beta, \gamma) \in \mathbb{R}^3 \right\}.$$

- (1) Montrer que \mathcal{F} est un sous espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ et en donner une base ainsi que sa dimension.
- (2) Soit $P = \begin{pmatrix} \alpha & \beta & \gamma \\ -\alpha & 0 & 2\gamma \\ \alpha & -\beta & \gamma \end{pmatrix}$ une matrice de \mathcal{F} . Montrer que

$$P$$
 est inversible \iff $(\alpha \neq 0 \text{ et } \beta \neq 0 \text{ et } \gamma \neq 0)$.

Partie II

On considère l'espace vectoriel $\mathbb{R}_2[X]$ des polynômes de degré inférieur ou égal à 2 et on note $(P_0, P_1, P_2) = (1, X, X^2)$ sa base canonique. On définit alors l'application φ de $\mathbb{R}_2[X]$ suivante.

$$\varphi: \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$$

$$P(X) \longmapsto (1+X)P(X) + (1+X)P'(X) - \frac{1}{2}X(1+X)^2P''(X)$$

- (3) Montrer que φ est une application linéaire de $\mathbb{R}_2[X]$. On admet que φ est un endomorphisme de $\mathbb{R}_2[X]$.
- (4) Calculer les images des polynômes P_0 , P_1 et P_2 par φ puis en déduire que la matrice de φ dans la base (P_0, P_1, P_2) est la matrice

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

(5) (a) Justifier que A est diagonalisable.

Juin 2020

(b) Vérifier que $Sp(A) = \{0, 1, 3\}$ et déterminer les sous espaces propres associés à chacune de ces valeurs propres.

(c) En déduire une matrice inversible Q de première ligne $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ et une matrice diagonale D dont les éléments diagonaux sont rangés par ordre croissants telles que : $A = QDQ^{-1}$.

On considère
$$P = \begin{pmatrix} \alpha & \beta & \gamma \\ -\alpha & 0 & 2\gamma \\ \alpha & -\beta & \gamma \end{pmatrix}$$
 une matrice de \mathcal{F} avec $\alpha \neq 0$ et $\beta \neq 0$ et $\gamma \neq 0$.

On cherche maintenant à montrer qu'on peut trouver des valeurs de α , β et γ pour lesquelles :

$$A = PD^{t}P$$
 où ^{t}P désigne la matrice transposée de la matrice P .

- (6) (a) En considérant le résultat de la question 5b, justifier que la matrice P vérifie la relation $A = PDP^{-1}$.
 - (b) Calculer le produit $P^{t}P$ en fonction de α , β et γ .
 - (c) En déduire l'existence de valeurs de α , β et γ telles que ${}^tP = P^{-1}$.
 - (d) Conclure qu'il existe un matrice P de \mathcal{F} telle que $A = PD^{-t}P$.

Partie III

On pose pour tout $(x, y, z) \in \mathbb{R}^3$, $g(x, y, z) = x^2 + 2y^2 + z^2 + 2xy + 2yz$. On considère la fonction $f: \mathbb{R}^2 \longmapsto \mathbb{R}$ définie par

$$\forall (x,y) \in \mathbb{R}^2, \qquad f(x,y) = g(x,y,y^2).$$

- (7) Expliciter f(x,y) et justifier que f est de classe \mathcal{C}^2 sur \mathbb{R}^2 .
- (8) Montrer que f admet exactement trois points critiques

$$R = (0,0), \quad S = (1,-1), \quad \text{et} \quad T = (1/2,-1/2).$$

- (9) Former la matrice hessienne de f en tout point (x, y) de \mathbb{R}^2 .
- (10) On suppose que les matrices hessiennes de f aux points R, S et T sont stockées respectivement dans les variables Scilab notées HR, HS et HT et on considère les instructions suivantes.

```
--> [P,D] = spec(HR) // éléments propres de la matrice HR

D = P =

0.763932 0. -0.8506508 0.5257311
0. 5.236068 0.5257311 0.8506508

--> [P,D] = spec(HS) // éléments propres de la matrice HS

D = P =

0.763932 0. -0.8506508 0.5257311
0. 5.236068 0.5257311
0. 5.236068 0.5257311
0. 5.236068 0.5257311
0. 6154122 -0.7882054
0. 3.5615528 0. 0.6154122 -0.7882054
0. 3.5615528 -0.7882054 -0.6154122
```

Déduire de ces résultats la nature des points critiques R, S et T.

(11) On souhaite montrer dans cette question que f admet un extremum global aux points R et S. Pour cela, on reprend la matrice A introduite dans la partie II et on considère la matrice colonne

Concours Blanc n°5

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 ainsi que sa transposée ${}^tX = (x, y, z).$

- (a) Vérifier que : ${}^{t}XAX = g(x, y, z)$.
- (b) Montrer, sans calculs explicites, que la transposée de la matrice (${}^{t}PX$) est (${}^{t}XP$).
- (c) En déduire, en utilisant la question 6d, que : $g(x,y,z) = {}^t X' D X'$ où on a posée $X' = {}^t P X = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$.
- (d) Vérifier alors que $g(x, y, z) = y'^2 + 3z'^2$ puis conclure quand à la nature des extrema aux points R et S.

Exercice 2

Dans tout l'exercice, on considère un réel $a \in \mathbb{R}_{+}^{*}$.

(1) Montrer que, pour tout entier $n \in \mathbb{N}$, l'intégrale

$$I_n = \int_0^{+\infty} x^n \exp\left(-\frac{x^2}{2a^2}\right) dx$$

est convergente.

(2) (a) Donner une densité d'une variable aléatoire suivant la loi normale d'espérance nulle et de variance a^2 . En déduire que

$$I_0 = a\sqrt{\frac{\pi}{2}}.$$

- (b) À l'aide du changement de variable $u = x^2/2$, montrer que $I_1 = a^2$.
- (3) (a) Montrer, à l'aide d'une intégration par parties que, pour tout entier $n \geq 2$ et pour tout $t \in [0; +\infty[$:

$$\int_0^t x^n \exp\left(-\frac{x^2}{2a^2}\right) \mathrm{d}x = -a^2 t^{n-1} \exp\left(-\frac{t^2}{2a^2}\right) + (n-1) a^2 \int_0^t x^{n-2} \exp\left(-\frac{x^2}{2a^2}\right) \mathrm{d}x.$$

(b) En déduire, pour tout entier $n \geq 2$ la relation

$$I_n = (n-1) a^2 I_{n-2}.$$

(c) Calculer I_2 et I_3 .

On considère l'application $g_a: \mathbb{R} \to \mathbb{R}$ définie, pour tout $x \in \mathbb{R}$, par

$$g_a(x) = \begin{cases} 0, & \text{si } x \le 0 \\ \frac{x}{a^2} \exp\left(-\frac{x^2}{2a^2}\right), & \text{si } x > 0 \end{cases}$$

(4) Montrer que g_a est une densité de probabilité.

On considère une variable aléatoire X admettant g_a comme densité.

- (5) Déterminer la fonction de répartition de la variable aléatoire X.
- (6) Montrer que la variable aléatoire X admet une espérance et que $E\left(X\right)=a\sqrt{\frac{\pi}{2}}.$
- (7) Montrer que la variable aléatoire X admet une variance et que $V(X) = \frac{4-\pi}{2}a^2$.

Juin 2020

(8) (a) On considère une variable aléatoire U suivant la loi uniforme sur l'intervalle,]0;1].

Montrer que la variable aléatoire $Z=a\sqrt{-2\ln{(U)}}$ suit la même loi que la variable aléatoire X.

(b) En déduire un programme Scilab, utilisant le générateur aléatoire rand(), simulant la variable aléatoire X, le réel a strictement positif étant entré par l'utilisateur.

Soit un entier $n \geq 2$. On considère un n- échantillon de X noté (X_1, X_2, \ldots, X_n) .

(9) On considère la variable aléatoire

$$A_n = \frac{\sqrt{2}}{n\sqrt{\pi}} \left(X_1 + X_2 + \dots + X_n \right).$$

- (a) Montrer que la variable aléatoire A_n est un estimateur sans biais de a.
- (b) Déterminer le risque quadratique de l'estimateur A_n .
- (10) On considère la variable aléatoire $M_n = \min(X_1, X_2, \dots, X_n)$.
 - (a) Montrer que pour tout $t \in [0, +\infty[$,

$$P(M_n > t) = \exp\left(-\frac{nt^2}{2a^2}\right).$$

- (b) En déduire l'expression de la fonction de répartition de M_n .
- (c) Montrer que M_n est une variable aléatoire à densité, admettant g_b comme densité avec

$$b = \frac{a}{\sqrt{n}}.$$

- (d) Montrez que la variable aléatoire M_n admet une espérance et une variance que l'on calculera.
- (e) En déduire un estimateur B_n , sans biais de a, de la forme $\lambda_n M_n$ avec $\lambda_n \in \mathbb{R}$.
- (f) Déterminer le risque quadratique de l'estimateur B_n .

Exercice 3

On considère la fonction f définie sur [0;1] par

$$f(x) = \begin{cases} x \left(1 + \frac{1}{\ln(x)} \right), & \text{si } 0 < x < 1 \\ 0, & \text{si } x = 0 \end{cases}$$

Partie I - Étude de f

- (1) Montrer que f est continue sur [0;1[.
- (2) Déterminer l'unique solution de l'équation f(x) = 0 sur]0;1[.
- (3) Déterminer la limite de f(x) lorsque x tend vers 1 par valeurs inférieures.
- (4) (a) Montrer que f est dérivable en 0.
 - (b) Expliciter le développement limité d'ordre 1 de f en 0.
 - (c) Justifier que f est dérivable sur]0;1[puis, pour $x \in]0;1[$, calculer f'(x).
- (5) On pose, pour $y \in \mathbb{R}$, $g(y) = y^2 + y 1$.
 - (a) Dresser le tableau de signes de g(y).
 - (b) Montrer que, pour tout $x \in]0;1[, f'(x) = \frac{g(\ln(x))}{\ln(x)^2}.$

Concours Blanc n°5

(c) En déduire que

$$f'(x) \geq 0 \Longleftrightarrow x \leq x_0,$$
 où on a posé $x_0 = \exp\left(-\frac{1+\sqrt{5}}{2}\right)$.

- (6) Dresser le tableau de variations de f.
- (7) Représenter graphiquement l'allure de la courbe de f. On fera apparaître la tangente en 0. On donne

$$e^{-1} \simeq 0.37$$
, $x_0 \simeq 0.2$, $f(x_0) \simeq 0.08$.

Partie II - Étude d'une suite et d'une série

On considère la suite (u_n) définie par

$$u_0 \in]0; x_0[, u_{n+1} = f(u_n).$$

- (8) Montrer que, pour tout $x \in]0;1[, f(x) < x$ et en déduire que, pour $x \in [0;1[, f(x) = x$ si et seulement si x = 0.
- (9) Montrer que, pour tout $n \in \mathbb{N}$, u_n est bien défini et que $u_n \in]0; x_0[$.
- (10) Montrer que (u_n) est monotone.
- (11) En déduire que (u_n) converge vers une limite à préciser.
- (12) Écrire un programme SciLab qui demande à l'utilisateur de rentrer la valeur de x_0 et calcule puis affiche le plus petit entier n tel que $u_n \le 10^{-3}$.
- (13) Le but de cette dernière question est l'étude de la convergence de la série $\sum u_n$.
 - (a) Pour tout $n \in \mathbb{N}$, on pose $v_n = \ln(u_{n+1})^2 \ln(u_n)^2$. Montrer que la série de terme général v_n diverge.
 - (b) Rappeler un équivalent en 0 de $\ln(1+x)$ et de $(1+x)^2 1$.
 - (c) Montrer que

$$v_n = \ln(u_n)^2 \left[\left(1 + \frac{\ln\left(1 + \frac{1}{\ln(u_n)}\right)}{\ln(u_n)} \right)^2 - 1 \right].$$

- (d) Déduire des deux questions précédentes que $v_n \sim 2, \ n \to +\infty$.
- (e) On admet que $\ln(u_n)^2 \sim 2n, \ n \to +\infty$. Montrer que

$$n^2 u_n \underset{n \to +\infty}{\sim} \frac{u_n \ln^4(u_n)}{4},$$

puis que

$$u_n = o\left(\frac{1}{n^2}\right), \quad n \to +\infty.$$

(f) En déduire la nature de la série $\sum u_n$.