

Exercices ** - Fiche n°2

Autour des coefficients binomiaux Mars-Avril 2020

Exercice 1

Soit $X \hookrightarrow \mathcal{B}(n,p)$.

Le but est de calculer la probabilité a = P(A) où A est l'évènement "X est pair".

- (1) On introduit $Y = (-1)^X$. Quelle est la loi de Y? Expliciter son espérance en fonction de a.
- (2) Calculer, à l'aide du théorème de transfert, l'espérance de Y en fonction de n et de p. Conclure.

Exercice 2

On considère une urne constituée de n boules, dont k sont blanches et n-k sont noires. On tire successivement et sans remise toutes les boules de l'urne (on fait donc n tirages), et on note X le numéro du tirage amenant la dernière boule blanche.

- (1) Que vaut $X(\Omega)$? Justifier.
- (2) À l'aide de la formule des probabilités composées, montrer que

$$P(X = k) = \frac{k!}{n(n-1)\cdots(n-k+1)} = \frac{1}{\binom{n}{k}}.$$

- (3) Soit $i \in [\![k; n]\!]$.
 - (a) Montrer qu'il y a $\binom{i-1}{k-1}$ tirages correspondant à l'évènement (X=i), et que ces tirages ont tous la même probabilité de se produire.
 - (b) En déduire que, pour tout $i \in X(\Omega)$,

$$P(X=i) = \frac{\binom{i-1}{k-1}}{\binom{n}{k}}.$$

- (4) En déduire la valeur de la somme $\sum_{i=k-1}^{n-1} \binom{i}{k-1}$.
- (5) Calculer E(X).

Exercice 3

Partie 1 - Préliminaires

On considère la suite (H_n) définie pour tout $n \in \mathbb{N}^*$ par

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

- (1) Montrer que (H_n) est croissante.
- (2) Montrer que $H_{2n} H_n \ge 1/2$.
- (3) On suppose que (H_n) est convergente vers une certaine limite ℓ . Quelle est alors la limite de (H_{2n}) ? En déduire une contradiction puis que

$$\lim_{n\to+\infty}H_n=+\infty.$$

Partie 2 - Étude de suites

Soit $p \in \mathbb{N}$ fixé. Pour tout entier naturel n non nul, on pose

$$u_n = \frac{1}{\binom{n+p}{n}}$$
 et $S_n = \sum_{k=1}^n u_k$.

- (4) Montrer que si p = 0 ou si p = 1 la suite (S_n) diverge. (On pourra utiliser le principe de comparaison et la partie préliminaire). Dans toute la suite on prend donc $p \ge 2$.
- (5) Montrer que

$$\forall n \in \mathbb{N}, (n+p+2) u_{n+2} = (n+2) u_{n+1}.$$

(6) En déduire par récurrence sur n que

$$S_n = \frac{1}{p-1} \left(1 - (n+p+1) u_{n+1} \right)$$

- (7) On pose $v_n = (n+p)u_n$. Montrer que la suite (v_n) est décroissante.
- (8) En déduire que la suite (v_n) converge et que sa limite ℓ est positive ou nulle.
- (9) Utiliser le résultat pprécédent pour montrer que (S_n) converge et donner sa limite en fonction de p et de ℓ .
- (10) On suppose dans cette question que $\ell \neq 0$. Montrer que

$$\lim_{n \to +\infty} \frac{\ell}{nu_n} = 1,.$$

et l'existence d'un $N_0 \in \mathbb{N}$, tel que, pour tout $n \geq N_0$,

$$u_n \ge \frac{\ell}{2n}$$
.

En déduire, en utilisant le principe de comparaison et la partie préliminaire, une contradiction à propos de la convergence de (S_n) .

(11) Donner la valeur de ℓ et en déduire en fonction de p, la somme de la série de terme général u_n .