

Écricome 2020

Voie E Une solution

Exercice 1

Dans cet exercice, on désigne par $\mathcal{M}_3(\mathbb{R})$ l'ensemble des matrices réelles carrées d'ordre 3, et on note I_3 la matrice identité de $\mathcal{M}_3(\mathbb{R})$.

Soit *a* un réel; on pose
$$M = \begin{pmatrix} 2 & a-1 & -1 \\ 1-a & a & a-1 \\ 1 & a-1 & 0 \end{pmatrix}$$
.

Partie A : Étude du cas où a = 1

Dans toute cette partie, on suppose que a=1.

(1) Pour a = 1, on obtient

$$M = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad M - I_3 = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix} \text{ et } (M - I)^2 = 0.$$

(2) De la relation $(M - I_3)^2 = 0$, on déduit que $(X - 1)^2$ est un polynôme annulateur de M. Par conséquent, les valeurs propres de M sont incluses dans l'ensemble des racines de ce polynôme qui ne s'annule qu'en 1. Ainsi, la seule valeur propre possible pour M est 1,

$$\operatorname{Sp}(M) \subset \{1\}.$$

(3) Il est clair que 0 n'est pas valeur propre de M, ainsi M est inversible. De plus, on observe facilement que $\operatorname{rg}(M-I_3)=1$ (il y a une colonne nulle et deux colonnes clairement liées). Par le théorème du rang, $\dim(\operatorname{Ker}(M-I_3))=2$. En particulier, 1 est bien valeur propre (et 1 est donc la seule valeur propre de M). En revanche, cette dimension n'étant pas égale à 3, la matrice M n'est pas diagonalisable.

Partie B : Étude du cas où a = 0

Dans cette partie, on suppose que a = 0.

(4) Pour a = 0, la matrice M est alors la matrice

2

$$M = \begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$$

Pour répondre à la question posée, on détermine $Ker(M - I_3)$:

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \text{Ker}(M - I_3) \iff MX = X$$

$$\iff \begin{cases} 2x - y - z &= x \\ x - z &= y \\ x - y &= z \end{cases}$$

$$\iff \begin{cases} x - y - z &= 0 \\ x - y - z &= 0 \\ x - y - z &= 0 \end{cases}$$

$$\iff X = y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

et on obtient $\operatorname{Ker}(M - I_3) = \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\0 \end{pmatrix}; \begin{pmatrix} 1\\0\\1 \end{pmatrix}\right).$

En particulier, 1 est bien valeur propre de M et le sous-espace associé a pour base $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

(la famille est génératrice et clairement libre; les deux vecteurs ne sont pas colinéaires) et est donc de dimension 2.

(5) On montre que $Ker(M) \neq \{0\}$, ce qui suffit à garantir la non inversibilité de M (et dans ce cas, 0 est valeur propre de M).

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \text{Ker}(M) \iff MX = 0$$

$$\iff \begin{cases} 2x - y - z &= 0 \\ x - z &= 0 \\ x - y &= 0 \end{cases}$$

$$\iff X = x \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Ainsi,

$$\operatorname{Ker}(M) = \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\1 \end{pmatrix}\right),$$

M n'est pas inversible, 0 est valeur propre et le sous-espace propre associé est de dimension 1.

(6) D'après les deux questions précédentes, on sait que $\{0,1\} \subset \operatorname{Sp}(M)$ et que $\dim(E_0) + \dim(E_1) = 1 + 2 = 3$. Or la somme des dimensions des sous-espaces propres de M ne peut dépasser 3 et on est assuré d'avoir toutes les valeurs propres. Comme le total des dimensions est 3, on peut conclure que M est diagonalisable.

Partie C: Étude du cas où a est différent de 0 et de 1

Dans cette partie, on suppose que a est différent de 0 et de 1. On pose $E = \mathbb{R}^3$, et $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de E. Soit f l'endomorphisme de E dont la matrice représentative dans la base \mathcal{B} est M. Soit u = (1, 1, 1), v = (1, 0, 1) et w = (1, 1, 0).

(7) La famille (u, v, w) étant composée de trois vecteurs de E qui est de dimension 3, il suffit de montrer qu'elle est libre pour pouvoir conclure qu'elle en forme une base. Soient $\alpha, \beta, \gamma \in \mathbb{R}$. On a

$$\alpha u + \beta v + \gamma w = 0 \iff \begin{cases} \alpha + \beta + \gamma &= 0 \\ \alpha + \gamma &= 0 \\ \alpha + \beta &= 0 \end{cases}$$
$$\iff \alpha = \beta = \gamma = 0$$

Ainsi, la famille \mathcal{B}' est bien libre et forme une base de E.

(8) Le calcul donne

$$M\begin{pmatrix}1\\1\\1\end{pmatrix} = \begin{pmatrix}a\\a\\a\end{pmatrix}, \quad M\begin{pmatrix}1\\0\\1\end{pmatrix} = \begin{pmatrix}1\\0\\1\end{pmatrix}$$

ce qui permet de voir que f(u) = au et f(v) = v. (En particulier, les vecteurs u et v étant non nuls, a et 1 sont valeurs propres de f).

(9) On calcule et résout

$$M\begin{pmatrix}1\\1\\0\end{pmatrix} = \begin{pmatrix}a+1\\1\\a\end{pmatrix} = a\begin{pmatrix}1\\0\\1\end{pmatrix} + \begin{pmatrix}1\\1\\0\end{pmatrix}$$

et donc f(w) = av + w (ou encore $\alpha = a$ et $\beta = 1$).

(10) Par définition de la matrice de f dans la base \mathcal{B}' et ayant obtenu f(u) = au, f(v) = v, f(w) = av + w, on peut écrire

$$T = \text{Mat}(f, \mathcal{B}') = \begin{pmatrix} a & 0 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}.$$

(11) La matrice T étant triangulaire supérieure, ses valeurs propres sont ses coefficients diagonaux. Ainsi,

$$\mathrm{Sp}(M) = \mathrm{Sp}(f) = \mathrm{Sp}(T) = \{a, 1\}.$$

On observe alors que $\operatorname{rg}(T-I_3)=2$ (car $a-1\neq 0$ et $a\neq 0$) donc $\dim(E_1)=\dim(\operatorname{Ker}(T-I_3)=1$. De même, $\operatorname{rg}(T-aI_3)=2$ et donc $\dim(E_a)=1$. La somme des dimensions des sous-espaces propres n'étant pas égale à 3, M n'est pas diagonalisable.

Exercice 2

Pour tout entier naturel non nul, on définit la fonction f_n sur \mathbb{R}_+ par :

$$\forall x \ge 0, \ f_n(x) = \int_0^x \frac{t^{2n} - 1}{t + 1} dt.$$

Partie A : Étude de la fonction f_n

Dans cette partie, on fixe un entier naturel n non nul.

(1) La fonction $g_n: t \mapsto \frac{t^{2n}-1}{t+1}$ est continue sur \mathbb{R}_+ comme quotient de fonctions polynomiales dont le dénominateur ne s'annule pas. Ainsi, d'après le cours d'Analyse (et un résultat qui s'appelle théorème fondamental de l'analyse), f_n est la primitive de g_n qui s'annule en 0. À ce titre, f_n est de classe \mathcal{C}^1 sur \mathbb{R}_+ et, pour tout $x \geq 0$, on a

$$f'_n(x) = \frac{x^{2n} - 1}{x + 1}.$$

(2) Le signe de $f'_n(x)$ est donné par celui de son numérateur. Or,

$$x^{2n} - 1 \ge 0 \iff x^{2n} \ge 1 \iff \ln(x) \ge 0 \iff x \ge 1.$$

On peut alors dresser le tableau de variations de f_n .

x	0		1		$+\infty$
$f'_n(x)$	0	_	0	+	
f_n	0		$f_n(1)$		/

(3) f'_n est quotient de fonctions polynomiales dont le dénominateur ne s'annule pas sur \mathbb{R}_+ donc f'_n est de classe \mathcal{C}^1 sur \mathbb{R}_+ et f_n est alors de classe \mathcal{C}^2 sur \mathbb{R}_+ . Pour $x \geq 0$, on a

$$f_n''(x) = \frac{2nx^{2n-1}(x+1) - (x^{2n}-1)}{(x+1)^2} = \frac{(2n-1)x^{2n} + 2nx^{2n-1} + 1}{(x+1)^2}.$$

Il est clair que, pour tout $x \ge 0$, $f_n''(x) \ge 0$ (le numerateur est somme de multiplies positifs de puissances de x; le dénominateur est un carré). Ainsi, f_n est convexe sur \mathbb{R}_+ .

(4) (a) On peut montrer ce résultat de plusieurs manières; on choisit ici une preuve relativement élégante. Si x>1, observons que

$$\frac{x^{n}-1}{x-1} = \sum_{k=0}^{n-1} x^{k} \ge \sum_{k=0}^{n-1} 1 = n$$

ce qui donne $x^n - 1 \ge n(x - 1)$ pour tout x > 1. Cette inégalité s'étend naturellement à x = 1 (les deux membres sont nuls). En l'appliquant à $x = t^2$ (si $t \ge 1$, on a bien $t^2 \ge 1$), on a l'inégalité voulue.

(b) Comme $t^2 - 1 = (t - 1)(t + 1)$, on a, pour tout $t \ge 1$,

$$\frac{t^{2n} - 1}{t + 1} \ge n(t - 1)$$

Soit $x \ge 1$. Par positivité de l'intégrale et par la relation de Chasles

$$f_n(x) = \int_0^1 \frac{t^{2n} - 1}{t+1} dt + \int_1^x \frac{t^{2n} - 1}{t+1} dt$$

$$\geq f_n(1) + n \int_1^x (t-1) dt$$

$$= f_n(1) + n \left[\frac{(t-1)^2}{2} \right]_1^x$$

$$= f_n(1) + n \frac{(x-1)^2}{2},$$

ce qui est bien l'inégalité demandée.

(c) Lorsque $x \to +\infty$, le membre de droite de l'inégalité précédente tend vers ∞ . Par théorème de comparaison, on peut conclure que

$$\lim_{x \to +\infty} f_n(x) = +\infty.$$

- (5) Comme $f_n(0) = 0$ et que f_n est strictement décroissante sur [0; 1], il suit que $f_n(1) < f_n(0) = 0$.
- (6) Chercher les solutions de l'équation $f_n(x) = 0$ revient à chercher les antécédents de 0 par f_n . La fonction f_n est continue sur \mathbb{R}_+ . Elle est strictement décroissante sur]0;1] et y réalise donc une bijection (par le théorème du même nom) vers $[f_n(1);0[$. Cet intervalle ne contient pas 0 qui n'admet donc aucun antécédent par f_n sur]0;1]. D'autre part, f_n est strictement croissante sur $]1;+\infty[$ et réalise donc une bijection de $]1;+\infty[$ vers $]f_n(1);+\infty[$, qui cette-fois contient 0. Ainsi, 0 admet un unique antécédent par f_n sur \mathbb{R}_+

$$f_n(x) = 0 \Longleftrightarrow x = x_n.$$

Partie B: Étude d'une suite implicite

et cet antécédent est strictement supérieur à 1. On le note x_n :

On admettra que:

$$\forall n \in \mathbb{N}^*, \ x_n \ge \frac{2n+2}{2n+1}.$$

(7) Soient $x \ge 0$ et $n \in \mathbb{N}^*$. On a

$$f_{n+1}(x) - f_n(x) = \int_0^x \frac{t^{2n+2} - 1}{t+1} dt - \int_0^x \frac{t^{2n} - 1}{t+1} dt$$

$$= \int_0^x \frac{t^{2n+2} - t^{2n}}{t+1} dt \quad \text{(par linéarité de l'intégrale)}$$

$$= \int_0^x \frac{t^{2n}(t^2 - 1)}{t+1} dt = \int_0^x t^{2n}(t-1) dt$$

$$= \left[\frac{t^{2n+2}}{2n+2} - \frac{t^{2n+1}}{2n+1} \right]_0^x = \frac{x^{2n+2}}{2n+2} - \frac{x^{2n+1}}{2n+1}$$

$$= x^{2n+1} \left(\frac{x}{2n+2} - \frac{1}{2n+1} \right),$$

ce qui est bien l'égalité demandée.

(8) (a) Soit $x \geq \frac{2n+2}{2n+1}$, d'après l'inégalité précédente

$$f_{n+1}(x) - f_n(x) = x^{2n+1} \left(\frac{x}{2n+2} - \frac{1}{2n+1} \right) \ge x^{2n+1} \left(1 - \frac{1}{2n+1} \right) = x^{2n+1} \cdot \frac{2n}{2n+1} \ge 0$$

donc $f_{n+1}(x) \ge f_n(x)$.

(b) On applique le résultat précédent à $x = x_n$ (ce qui est licite par l'hypothèse admise en début de partie). Ainsi,

$$f_{n+1}(x_n) \ge f_n(x_n) = 0.$$

(c) Comme f_{n+1} est bijective et strictement croissante sur $[1; +\infty[$ et que x_n et x_{n+1} en sont éléments, on a

$$f_{n+1}(x_n) \ge 0 = f_{n+1}(x_{n+1}) \Longrightarrow x_n \ge x_{n+1}$$

et la suite (x_n) est décroissante. Celle-ci étant également minorée par 1, le théorème de convergence monotone assure qu'elle converge, vers une certaine limite (que l'on peut noter ℓ) vérifiant $\ell \geq 1$.

(9) (a) On sait déjà que $f_n(1) \leq 0$. Montrons que $f_n(1) \geq -\ln(2)$. Pour tout $t \in [0; 1]$, on a $t^{2n} - 1 \geq -1$. Il suit (comme $t + 1 \geq 0$) que

$$\frac{t^{2n} - 1}{t + 1} \ge \frac{-1}{t + 1}$$

puis, par positivité de l'intégrale,

$$f_n(1) = \int_0^1 \frac{t^{2n} - 1}{t+1} dt \ge \int_0^1 \frac{(-1)}{t+1} dt = -[\ln(1+t)]_0^1 = -\ln(2),$$

ce qui donne bien ce qu'on voulait.

(b) On applique l'inégalité obtenue en 4b à $x=x_n$. D'après la question précédente, $0 \le -f_n(1) \le \ln(2)$ et on obtient

$$(x_n - 1)^2 = \frac{2}{n} \left(f_n(x_n) - f_n(1) \right) = -\frac{2}{n} f_n(1) \le \frac{2\ln(2)}{n}.$$

Comme on sait que $x_n \ge 1$ (et donc $x_n - 1 \ge 0$) ceci donne bien, en prenant la racine qui est une fonction croissante

$$0 \le x_n - 1 \le \sqrt{\frac{2\ln(2)}{n}}.$$

Le membre de droite tend clairement vers 0 lorsque $n \to +\infty$. Par le théorème des gendarmes, on a $x_n - 1 \to 0$, $n \to +\infty$, ce qui permet de conclure que

$$\lim_{n \to +\infty} x_n = 1$$

Partie 3 : Étude d'une fonction de deux variables

On étudie la fonction G_n définie sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$ par

$$\forall (x,y) \in \mathbb{R}_+^* \times \mathbb{R}_+^*, \quad G_n(x,y) = f_n(x) \times f_n(y).$$

(10) Les fonctions $(x,y) \mapsto x$ et $(x,y) \mapsto y$ étant de classe \mathcal{C}^2 sur \mathbb{R}^2 (car polynomiales) et donc sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$, à valeurs dans \mathbb{R}_+^* , par composition avec la fonction f_n de classe \mathcal{C}^2 sur \mathbb{R}_+ , les fonctions $(x,y) \mapsto f_n(x)$ et $(x,y) \mapsto f_n(y)$ sont aussi \mathcal{C}^2 sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$ et par produit c'est encore

le cas de G_n .

On a alors, pour tout $(x, y) \in \mathbb{R}_+^* \times \mathbb{R}_+^*$

$$\partial_1 G_n(x,y) = f_n(y) \times f'_n(x) = \left(\int_0^y \frac{t^{2n} - 1}{t + 1} dt \right) \frac{x^{2n} - 1}{x + 1}$$
$$\partial_2 G_n(x,y) = f_n(x) \times f'_n(y) = \left(\int_0^x \frac{t^{2n} - 1}{t + 1} dt \right) \frac{y^{2n} - 1}{y + 1}$$

(11) On résout

$$(x,y)$$
point critique de $G_n \iff \begin{cases} \partial_1 G_n(x,y) = 0 \\ \partial_2 G_n(x,y) = 0 \end{cases}$
 $\iff \begin{cases} f_n(x)f'_n(y) = 0 \\ f_n(y)f'_n(x) = 0 \end{cases}$

Or, sur \mathbb{R}_+^* , f_n ne s'annule qu'en x_n et f_n' ne s'annule qu'en 1. Ainsi,

$$\begin{cases} f_n(x)f'_n(y) &= 0 \\ f_n(y)f'_n(x) &= 0 \end{cases} \iff \begin{cases} f_n(x) &= 0 \\ f_n(y) &= 0 \end{cases} \text{ ou } \begin{cases} f'_n(y) &= 0 \\ f'_n(x) &= 0 \end{cases}$$
$$\iff \begin{cases} x &= x_n \\ y &= x_n \end{cases} \text{ ou } \begin{cases} x &= 1 \\ y &= 1 \end{cases}$$

Ainsi, G_n admet deux points critiques: (x_n, x_n) et (1, 1).

(12) On commence par calculer les dérivées partielles d'ordre 2.

$$\partial_{1,1}^{2}G_{n}(x,y) = f_{n}(y)f_{n}''(x)$$

$$\partial_{1,2}^{2}G_{n}(x,y) = \partial_{2,1}^{2}G_{n}(x,y)$$

$$= f_{n}'(x)f_{n}'(y)$$

$$= \frac{x^{2n} - 1}{x + 1} \times \frac{y^{2n} - 1}{y + 1}$$

$$\partial_{2,2}^{2}G_{n}(x,y) = f_{n}(x)f_{n}''(y)$$

On forme alors les matrices hessiennes (on rappelle que $f_n(x_n) = 0$ et que $f'_n(1) = 0$). De plus, observant que

$$f'_n(x_n)^2 = \left(\frac{x_n^{2n} - 1}{x_n + 1}\right)^2,$$

et

$$f_n''(1) = n$$

on peut écrire

$$H(x_n, x_n) = \left(\frac{x_n^{2n} - 1}{x_n + 1}\right)^2 \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

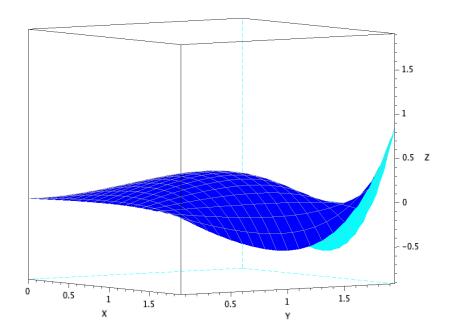
et

$$H(1,1) = nf_n(1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

(13) Les valeurs propres de $H(x_n, x_n)$ sont de même signe que celle de la matrice $M = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ dont le spectre est $Sp(M) = \{1, -1\}$ (qu'on obtient en résolvant $\lambda^2 - 1 = 0$ correspondant au fait que $M - \lambda I_2$ ne soit pas inversible). Les deux valeurs propres sont de signes opposés; G_n présente un point selle en (x_n, x_n) .

(14) En (1,1), la hessienne est déjà diagonale, ses valeurs propres (qui sont ses coefficients diagonaux) sont strictement négatives (car $nf_n(1) < 0$ car $f_n(1) < 0$). Ainsi, G_n présente un maximum local en (1,1) (ce maximum vaut $G_n(1,1) = f_n(1)^2$).

On ne résiste pas, pour le plaisir des yeux, à l'envie de joindre une représentation de la surface $z = G_n(x, y)$ pour n = 2 sur $]0; 2] \times]0; 2]$ obtenue avec SciLab.



Exercice 3

Soit a un réel strictement négatif.

(1) L'intégrale $I_n(a)$ est impropre en $+\infty$. Soit X>a. On a

$$\int_{a}^{X} \frac{1}{t^{n}} dt = \left[-\frac{1}{(n-1)t^{n-1}} \right]_{a}^{X}$$

$$= \frac{1}{(n-1)a^{n-1}} - \frac{1}{(n-1)X^{n-1}}$$

$$\xrightarrow{X \to +\infty} \frac{1}{(n-1)a^{n-1}},$$

car n-1>0 (car $n\geq 2$). Ainsi, l'intégrale $I_n(a)$ converge et $I_n(a)=\frac{1}{(n-1)a^{n-1}}$. (Remarque. On pouvait justifier la convergence en reconnaissant une intégrale de Riemann...)

(2) Soit f la fonction définie sur \mathbb{R} par

$$f(x) = \begin{cases} 0, & \text{si } t < a \\ \frac{3a^2}{t^4}, & \text{si } t \ge a \end{cases}$$

- (a) On montre que f est bien une densité de probabilité.
 - f est continue partout sauf en a. En effet, sur $]-\infty$; a[, f est constante (nulle) donc continue. Sur $]a; +\infty[$, f est inverse d'une fonction polynomiale qui ne s'annule pas.
 - f est positive ou nulle partout sur \mathbb{R} . Comme a > 0, $3a^3/t^4 > 0$ sur $[a; +\infty[$ et f est nulle ailleurs.
 - L'intégrale sur] $-\infty$; $+\infty$ [de f converge et vaut 1. Comme f est nulle sur] $-\infty$; a[, on se ramène à la convergence de l'intégrale sur $[a; +\infty[$. On reconnait un multiple de l'intégrale $I_n(a)$ avec n=4. Donc l'intégrale converge et vaut

$$\int_{-\infty}^{+\infty} f(t) dt = \int_{a}^{+\infty} f(t) dt = 3a^{3} I_{4}(a) = 1.$$

Ainsi, f est bien une densité de probabilité. Soit X une variable aléatoire admettant f pour densité.

(b) La fonction de répartition F_X de X est donnée par

$$F_X(x) = \int_{-\infty}^x f(t) dt.$$

Comme f est nulle sur $]-\infty; a[$, il est clair que $F_X(x)=0$ pour x < a. Si $x \ge a$, un calcul similaire à celui fait à la question 1 donne $F_X(x)$. Au final, on peut écrire

$$F_X(x) = \begin{cases} 0, & \text{si } x < a \\ 1 - \frac{a^3}{r^3}, & \text{si } x \ge a \end{cases}$$

(c) Par définition,

$$X$$
 admet une espérance $\iff \int_{-\infty}^{+\infty} t f(t) dt$ converge absolument $\iff \int_{a}^{+\infty} \frac{3a^3}{t^3} dt$ converge.

On reconnait un multiple de l'intégrale $I_3(a)$ qui converge. Donc X admet une espérance et

$$E(X) = 3a^3 I_3(a) = \frac{3a}{2}.$$

(d) Par König-Huyguens,

$$X$$
 admet une variance $\iff \int_{-\infty}^{+\infty} t^2 f(t) dt$ converge absolument $\iff \int_a^{+\infty} \frac{3a^3}{t^2} dt$ converge.

On reconnait un multiple de l'intégrale $I_2(a)$ qui converge. Donc X admet (un moment d'ordre 2 et donc) une variance et

$$E(X^2) = 3a^3 I_2(a) = 3a^2.$$

On obtient alors

$$V(X) = E(X^2) - E(X)^2 = 3a^2 - \left(\frac{3a}{2}\right)^2 = \frac{3a^2}{4},$$

ce qu'on voulait.

- (3) Soit $U \hookrightarrow \mathcal{U}(]0;1]$). On pose $Y = \frac{a}{U^{1/3}}$.
 - (a) Comme la fonction $t \mapsto at^{-1/3}$ réalise une bijection (elle est continue et strictement décroissante) de]0;1] sur $[a;+\infty[$ et que $U(\Omega)=]0;1]$ d'après l'énoncé, on peut conclure que $Y(\Omega)=[a;+\infty[$.
 - (b) D'après la question précédente, $F_Y(x) = 0$ si x < a. Soit donc $x \ge a$. On a

$$F_Y(x) = P(Y \le x) = P\left(a \exp\left(-\frac{1}{3}\ln(U)\right) \le x\right)$$

$$= P\left(U \ge \exp\left(-3\ln\left(\frac{x}{a}\right)\right)\right)$$

$$= 1 - F_U\left(\exp\left(-3\ln\left(\frac{x}{a}\right)\right)\right) = 1 - F_U\left(\frac{a^3}{x^3}\right)$$

Or, si $x \ge a$, $a^3/x^3 \in]0;1]$ et donc $F_U(a^3/x^3) = a^3/x^3$. Au final, on obtient, pour $x \ge a$

$$F_Y(x) = \begin{cases} 0, & \text{si } x < a \\ 1 - \frac{a^3}{x^3}, & \text{si } x \ge a \end{cases}$$

ou encore $F_Y(x) = F_X(x)$, et on peut conclure que X et Y suivent la même loi.

(c) On va simuler la loi de X en simulant Y via inversion avec la formule précédente, à partir de la loi uniforme avec une opération pointée.

```
function Y=simulX(a,m,n)
U=rand(m,n)
Y=a*U.^(-1/3)
endfunction
```

(4) (a) On utilise la fonction de répartition

$$P(X > 2a) = 1 - F_X(2a) = 1 - \left(1 - \frac{a^3}{(2a)^3}\right) = \frac{1}{8}.$$

(b) La définition de probabilité conditionnelle donne

$$P_{[X>2a]}(X>6a) = \frac{P([X>6a] \cap [X>2a])}{P(X>2a)} = \frac{P(X>6a)}{P(X>2a)} = \frac{1 - (1 - a^3/(6a)^3)}{1/8} = \frac{8}{6^3} = \frac{1}{27}.$$

(c) L'idée est alors simuler un assez grand échantillon de X (ici N=10000) et de compter (avec la variable $\mathfrak{s1}$) le nombre des réalisations de X pour lesquelles le résultat est strictement plus grand que 2a. Parmi ces réalisations, on compte (avec la variable $\mathfrak{s2}$) celles qui sont strictement supérieures à 6a). Le quotient des fréquences, qui est aussi égal au quotient $\mathfrak{s2/s1}$ donne une estimation de la probabilité conditionnelle cherchée (seulement si $\mathfrak{s1}>0$ sinon on diviserait par 0 mais dans ce cas la probabilité conditionnelle n'a pas de sens).

```
\begin{array}{l} a{=}10 \\ N{=}10000 \text{ //taille de l'échantillon} \\ s1{=}0 \\ s2{=}0 \\ X{=}simulX(a,1,N) \text{ // échantillon de X de taille N} \\ \text{ for } k{=}1{:}N \end{array}
```

(5) Soit n un entier naturel non nul et $(X_1, X_2, ..., X_n)$ un échantillon de X.

On pose
$$V_n = \frac{2}{3n} \sum_{k=1}^n X_k$$
.

(a) La variable aléatoire V_n est une fonction de l'échantillon dont la loi dépend de a; c'est donc un estimateur de a. Pour montrer qu'il est sans biais, on calcule son espérance. Par linéarité de celle ci, et comme les X_k ont toutes pour espérance E(X) = 3a/2, on a

$$E(V_n) = \frac{2}{3n}E(X_1 + \dots + X_n) = \frac{2}{3n} \times n \times \frac{3a}{2} = a$$

et V_n est bien un estimateur sans biais de a.

(b) Comme V_n est sans biais, son risque quadratique est égal à sa variance.

$$r(V_n) = V(V_n) = V\left(\frac{2}{3n}\sum_{k=1}^n X_k\right)$$

$$= \frac{4}{9n^2}\left(\sum_{k=1}^n X_k\right)$$

$$= \frac{4}{9n^2}\sum_{k=1}^n V(X_k) \quad \text{(par indépendance des } X_k\text{)}$$

$$= \frac{4}{9n^2} \times n \times V(X) = \frac{4}{9n}\frac{3a^2}{4}$$

$$= \frac{a^2}{3n}.$$

- (6) On pose $W_n = \min(X_1, ..., X_n)$.
 - (a) Cette question est très classique.

$$F_{W_n}(x) = P(W_n \le x) = 1 - P(\min(X_1, ..., X_n) > x)$$

$$= 1 - P([X_1 > x] \cap [X_2 > x] \cap ... \cap [X_n > x])$$

$$= 1 - P(X_1 > x)P(X_2 > x)...P(X_n > x) \quad \text{(par indépendance des } X_k)$$

$$= 1 - (1 - F_X(x))^n$$

et on peut écrire

$$F_{W_n}(x) = \begin{cases} 0, & \text{si } x < a \\ 1 - \frac{a^{3n}}{x^{3n}}, & \text{si } x \ge a \end{cases}$$

La fonction de répartition de W_n est continue sur \mathbb{R} , en particulier au point de raccordement a et est de classe \mathcal{C}^1 partout sauf en a (les morceaux sont des combinaisons d'inverses de fonctions polynomiales qui ne s'annulent pas), W_n est bien une variable aléatoire à densité.

(b) Une densité de W_n est obtenue en dérivant F_{W_n} en dehors de a (et en prenant en t=a une valeur arbitraire). En particulier,

$$f_n(t) = \begin{cases} 0, & \text{si } x < a \\ \frac{3na^{3n}}{x^{3n+1}}, & \text{si } x \ge a \end{cases}$$

(c) Tout cela devient très long si on n'utilise pas les intégrales $I_n(a)$... Par définition,

$$W_n$$
 admet une espérance $\iff \int_{-\infty}^{+\infty} t f_n(t) dt$ converge absolument $\iff 3na^{3n} \int_a^{+\infty} \frac{1}{t^{3n}} dt$ converge.

On reconnait un multiple de l'intégrale $I_{3n}(a)$ qui converge. Donc W_n admet une espérance et

$$E(W_n) = 3na^{3n}I_{3n}(a) = \frac{3na^{3n}}{(3n-1)a^{3n-1}} = \frac{3n}{3n-1}a.$$

Par linéarité de l'espérance,

$$E\left(\frac{3n-1}{3n}W_n\right) = a,$$

il suffit donc de prendre $\lambda_n = \frac{3n-1}{3n}$ pour obtenir un estimateur sans biais de a.

(d) Le risque quadratique de ce nouvel estimateur est égal à sa variance. Pour calculer tout cela, on a besoin de la variance de W_n et donc de son moment d'ordre 2. On se remonte les manches (si ce n'était pas déjà le cas) et on y va. Par König-Huyguens,

$$W_n$$
 admet une variance $\iff \int_{-\infty}^{+\infty} t^2 f_n(t) dt$ converge absolument $\iff 3na^{3n} \int_{0}^{+\infty} \frac{1}{t^{3n-1}} dt$ converge.

On reconnait un multiple de l'intégrale $I_{3n-1}(a)$ qui converge. Donc W_n admet (un moment d'ordre 2 et donc) une variance et

$$E(W_n^2) = 3na^{3n}I_{3n-1}(a) = \frac{3n}{3n-2}a^2$$

On obtient alors

$$V(W_n) = E(W_n^2) - E(W_n)^2 = \left(\frac{3n}{3n-2} - \frac{(3n)^2}{(3n-1)^2}\right)a^2 = \frac{3n}{(3n-1)^2(3n-2)}a^2$$

et enfin

$$r(\lambda_n W_n) = \lambda_n^2 V(W_n) = \left(\frac{3n-1}{3n}\right)^2 \frac{3n}{(3n-1)^2 (3n-2)} a^2 = \frac{a^2}{3n(3n-2)}$$

ce qui fait quand même plaisir car c'est bien ce qu'on demande.

(7) (a) On complète sans difficulté. Chacune des m lignes de X est un n-échantillon de X.

```
function V=simulV(a,m,n)
    X=simulX(a,m,n)
    V=zeros(1,m)
    for k=1:m
        V(k)=2/(3*n)*sum(X(k, :))
    end
endfunction
```

(b) Parmi les deux suites représentées, l'une semble être très proche de 5 et l'autre oscille autour de 5. Comme chacune de ces deux suites semblent représenter les réalisations des deux estimateurs V_n et $\lambda_n W_n$ de a, on peut comprendre qu'on a pris a=5. On a 20 points de chaque donc m=20. Les questions précédentes ont permis de voir, via le calcul du risque quadratique que $\lambda_n W_n$ était un meilleur estimateur de a; il "converge" vers a plus rapidement, ce qui nous permet de comprendre que la suite représentée avec des + correspond aux termes de $(\lambda_n W_n)$ alors que la suite représentée avec des \times est (V_n) . On peut donc compléter le programme:

```
W=simulW(5,20, 100)
V=simulV(5,20, 100)
plot2d(W, style=-1) //-1 correspond à des +
plot2d(V, style=-2) //-2 correspond à des x
```

À titre de remarque, on joint aussi le programme que le sujet aurait pu demander d'écrire pour simuler W_n .

```
function W=simulW(a, m, n)
    X=simulX(a,m,n)
    W=(3*n-1)/(3*n)*min(X,'c')
endfunction
```