

T.P. n°1

Suites, fonctions et représentations graphiques. Révisions - Septembre 2019

Exercice 1.

- (1) Rappeler les DL à l'ordre 1 et 2 de $\ln(1+x)$ en 0.
- (2) Que fait le programme suivant? Pourquoi y a-t-il des "prime" à la ligne (8)? Réécrire les lignes (7) et (8) en remplaçant plot2d() par plot().
 - (1) function y=f(x)
 - (2) y=log(x+1)
 - (3) endfunction
 - (4) function y=g(x)
 - (5) $y=x-x^2/2$
 - (6) endfunction
 - (7) x=-1.01:.01:1; y=feval(x,f); z=feval(x,g);
 - (8) plot2d(x, [y',x',z'])

Exercice 2. (Extrait de **EML 2019**, Exercice 3) On introduit la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$u_1 = 1 \text{ et } \forall n \in \mathbb{N}^*, \ u_{n+1} = u_n + \frac{1}{n^2 u_n}.$$

(1) Recopier et compléter les lignes 3 et 4 de la fonction SciLab suivante afin que, prenant en argument un entier n de \mathbb{N}^* , elle renvoie la valeur de u_n .

endfunction

(2) Il est possible de montrer (mais on s'en dédouane dans ce TP) que (u_n) converge vers une limite ℓ et que, pour tout $p \geq 2$,

$$0 \le \ell - u_p \le \frac{1}{p-1}.$$

Écrire alors une fonction Scilab qui renvoie une valeur approchée de ℓ à 10^{-4} près.

2 TP n°1.

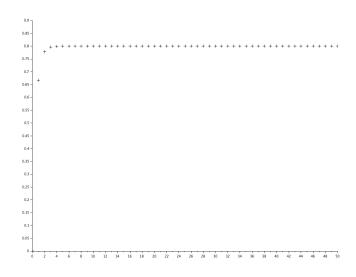
Exercice 3. (Suites à récurrence linéaire d'ordre 2). On considère la suite (u_n) définie, pour tout $n \in \mathbb{N}$, par

$$u_0 = 0$$
, $u_1 = 2$, et $u_{n+2} = \frac{7}{2}u_{n+1} - \frac{3}{2}u_n$.

(1) Compléter la fonction SciLab suivante afin qu'elle renvoie le terme général u_n en fonction de n

```
function res=U(n)
    Uold=....
    Unew=....
    for i=....
        uux=....
        Uold=....
        Unew=....
    end
    res=....
endfunction
```

(2) Le graphique suivant représente les termes de la suite (z_n) définie par $z_n = u_n/3^n$, pour $0 \le n \le 50$.



- (a) Par lecture graphique, déterminer un équivalent de u_n .
- (b) Quelle est l'expression du terme général de (u_n) ?

Exercice 4. On considère une suite (u_n) définie par son premier terme $u_0 = 1$ et pour tout entier n,

$$u_{n+1} = u_n + \frac{1}{u_n}.$$

(1) Écrire un programme en SciLab qui calcule et affiche la valeur de u_n lorsque l'utilisateur entre la valeur de n au clavier.

Pour
$$n = 100$$
, on trouve $u_{100} = 14.284064$.

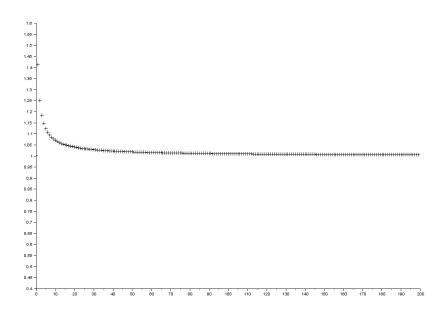
- (2) Écrire une fonction en Scilab prenant comme paramètre un entier n et renvoyant la valeur de u_n .
- (3) Écrire une fonction en SciLab prenant comme paramètre un entier n et renvoyant toutes les valeurs de u_0 à u_n rangées dans un vecteur.
- (4) Écrire un programme en SciLab permettant de déterminer et d'afficher le plus petit entier naturel n pour lequel $u_n \ge 100$.

$$\bigcirc$$
 On trouve $n=4998$.

(5) On considère le programme SciLab suivant et la figure associée

```
u=1 ;
eq=[1]
for i=1:200
    u=(u+1/u) ;
    eq=[eq,u/sqrt(2*i)]
end

plot2d([0:200],eq,-1,rect=[0,0.4,200,1.6]);
```



- (a) Que contient la variable eq en fin de boucle?
- (b) Conjecturer alors un équivalent de la suite (u_n) en $+\infty$ ainsi que la limite.
- (c) Montrer que la suite (u_n) diverge effectivement vers $+\infty$. On montrera que la suite est croissante et non majorée.

Exercice 5. (***Extrait de ESSEC II 2016) On considère la suite (u_n) définie par

$$u_0 = 1,$$
 $u_n = u_{n-1}p_1 + u_{n-2}p_2 + \dots + u_0p_n.$

Sous SciLab, soit $P=[p_1,...,p_n]$ le vecteur ligne tel que $P(j)=p_j$ (pour $j \in [1;n]$). Écrire un programme qui calcule u_n à partir de P. On propose deux méthodes.

```
Méthode 1: à compléter
```

4 TP n°1.

Exercice 6. On considère la série $\sum_{k\geq 0} \frac{1}{4^k + \ln(k+1) + 1}$.

- (1) Donner un équivalent du terme général de la série.
- (2) Justifier que cette série converge. On note S sa somme.
- (3) On souhaite déterminer une valeur approchée de S.
 - (a) Montrer que:

$$\left| \sum_{k=0}^{n} \frac{1}{4^k + \ln(k) + 1} - S \right| \le \frac{1}{3 \times 4^n}.$$

(b) Écrire une fonction SciLab, d'entête y=S_approx(eps) prenant en paramètre un réel eps et renvoyant une valeur approchée de S à eps près.

Exercice 7. (Extrait **ORAL ESM**, non daté) Pour tout $n \in \mathbb{N}^*$, on considère la fonction

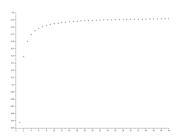
$$f_n: [0;1] \longrightarrow \mathbb{R}$$

 $x \longmapsto 1 - 2x^3 + \frac{2}{n}x(x-1)$

- (1) Montrer que, pour tout $n \in \mathbb{N}^*$, la fonction f_n s'annule en un unique point de [0; 1]. Dans la suite, on notera u_n le réel de [0; 1] tel que $f(u_n) = 0$.
- (2) Écrire un programme SciLab d'entête y=u(n), par méthode de dichotomie avec une erreur de l'ordre de 10^{-6} , donnant une approximation de u_n . On pourra s'inspirer du programme ci-dessous

(3) À la suite de ces fonctions, nous avons lancé le programme suivant et obtenu le graphique ci-contre. Que peut-on conjecturer à propos de la convergence de la suite (u_n) ?

```
nmax=40; L=[];
for n=1:nmax
    L=[L, u(n)];
end
plot2d(1:nmax, L, -1)
```



(4) Déterminer le sens de variation de (u_n) puis montrer qu'elle converge. Préciser sa limite.