

Dernier entraînement

Période du 10 au 20 Juin

Semaine 1000 - Compléments

Problème 1

Soient λ un réel strictement supérieur à 2 et X une variable aléatoire suivant la loi exponentielle de paramètre λ .

- (1) Donner l'expression de la fonction de répartition de X et préciser son espérance et sa variance.
- (2) On considère une suite de variables aléatoires $(X_i)_{i\in\mathbb{N}^*}$, indépendantes et suivant toutes la loi exponentielle de paramètre λ et on pose pour tout entier n non nul

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

- (a) Calculer $E(S_n)$ et $V(S_n)$.
- (b) En déduire que S_n est un estimateur sans biais et convergent de $\frac{1}{\lambda}$.
- (3) Montrer que $E\left(e^{X}\right)$ et $E\left(e^{2X}\right)$ existent et valent respectivement $\frac{\lambda}{\lambda-1}$ et $\frac{\lambda}{\lambda-2}$.

On pose $Y = e^X$ et on admet que Y est une variable aléatoire et on note F_Y sa fonction de répartition.

- (4) (a) Justifier que $Y(\Omega) = [1; +\infty[$.
 - (b) Déterminer $F_Y(t)$ pour t < 1 puis montrer que $F_Y(t) = 1 t^{-\lambda}$ pour $t \ge 1$.
 - (c) En déduire que Y est une variable aléatoire à densité et déterminer une densité de Y. On dit que Y suit une loi de Pareto de paramètres λ et 1, notée $\mathcal{P}(\lambda, 1)$.
- (5) (a) Soit $k \in \mathbb{N}$. Montrer que $E(Y^k)$ existe si et seulement si $k < \lambda$. Justifier alors que Y admet une espérance et une variance.

(b) Calculer, à l'aide de la question 3, les valeurs de l'espérance et de la variance de Y.

On considère une suite de variables aléatoires $(Y_i)_{i\in\mathbb{N}^*}$, indépendantes et suivant toutes la même loi de Pareto $\mathcal{P}(\lambda,1)$ que Y (définie à la question 4c) et on pose pour tout entier n non nul : $Z_n = \min(Y_1,\ldots,Y_n)$.

- (6) Simulation informatique.
 - (a) On rappelle qu'en SciLab, la commande grand(1,1,'exp',1/m) simule une variable aléatoire suivant la loi exponentielle de paramètre m.
 Écrire une fonction d'entête function Y = Pareto(lambda) qui permet de simuler la vari-

able aléatoire $Y \hookrightarrow \mathcal{P}(\lambda, 1)$ suivant une loi de Pareto de paramètres lambda et 1.

(b) Compléter la fonction suivante pour qu'elle permette de simuler la variable Z_n .

- (c) On considère le script donné en annexe ainsi que les graphiques associés. A partir des graphiques obtenus, conjecturer la loi suivie par la variable Z_n .
- (7) (a) Soit $t \ge 1$. Montrer que : $P(Z_n > t) = t^{-\lambda n}$.
 - (b) En déduire la fonction de répartition de Z_n puis vérifier que Z_n suit également une loi de Pareto dont on précisera les paramètres.

On considère encore une suite de variables aléatoires $(Y_i)_{i\in\mathbb{N}^*}$, indépendantes et suivant toutes la même loi de Pareto $\mathcal{P}(\lambda,1)$ que Y (définie à la question 4c). On souhaite construire un estimateur du paramètre λ par une méthode dite du maximum de vraisemblance¹.

Soit n un entier naturel non nul et x_1, x_2, \ldots, x_n, n réels supérieurs ou égaux à 1. On pose

$$S_n = \sum_{i=1}^n \ln(x_i)$$

et on définit alors la fonction H, sur \mathbb{R}_+^* , par

$$H: \lambda \longmapsto H(\lambda) = \prod_{i=1}^{n} \lambda x_i^{-\lambda - 1}.$$

- (8) On définit la fonction $\varphi : \lambda \longmapsto \varphi(\lambda) = \ln(H(\lambda))$.
 - (a) Montrer que : $\varphi(\lambda) = n \ln(\lambda) (\lambda + 1) S_n$.
 - (b) Calculer $\varphi'(\lambda)$ puis montrer que φ admet un maximum atteint en $\lambda^* = \frac{n}{S_n}$.

¹Méthode déjà rencontrée dans quelques sujets EDHEC

Printemps 2020 3

(9) On pose

$$T_n = \frac{n}{\sum_{i=1}^{n} \ln(Y_i)}$$

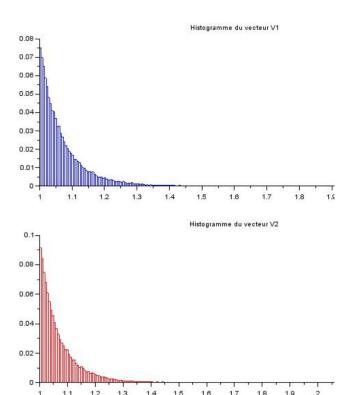
et **on admet** que

$$E(T_n) = \frac{n}{n-1}\lambda,$$
 et $V(T_n) = \frac{n^2}{(n-1)^2(n-2)}\lambda^2.$

- (a) Justifier que T_n est un estimateur de λ .
- (b) Montrer que T_n est un estimateur asymptotiquement sans biais de λ puis déterminer un réel c_n tel que $T'_n = c_n T_n$ soit un estimateur sans biais de λ .
- (c) Déterminer le risque quadratique de T'_n puis en déduire que c'est un estimateur convergent de λ .

```
lambda = input('lambda=?')
n = input('n=?')
V1 = [ ]
V2 = [ ]
for i = [1:50000]
    V1 = [ V1, Simu_Z(lambda , n) ];
    V2 = [ V2, Pareto(lambda*n) ];
end
histplot(200, V1)
xtitle("Histogramme_du_vecteur_V1")
histplot(200, V2)
xtitle("Histogramme_du_vecteur_V2")
```

Pour différentes valeurs de lambda et n entrées par l'utilisateur, on obtient des graphiques similaires à ceux reproduits ci-dessous (seules les valeurs numériques changent).



Problème 2

Si (a_n) , (b_n) , (c_n) , (d_n) , (e_n) , (f_n) , (g_n) , (h_n) , (i_n) désignent neuf suites convergentes, de limites respectives a, b, c, d, e, f, g, h, i, et si (M_n) est une suite de matrices de $\mathcal{M}_3(\mathbb{R})$ définie par

$$M_n = \begin{pmatrix} a_n & b_n & c_n \\ d_n & e_n & f_n \\ g_n & h_n & i_n \end{pmatrix},$$

on dit que la suite de matrices (M_n) admet une limite coefficient par coefficient, et on note

$$\lim_{n \to +\infty} M_n = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}.$$

Si $A \in \mathcal{M}_3(\mathbb{R})$, on pose, pour tout entier naturel n

$$S_n(A) = \sum_{k=0}^n \frac{1}{k!} A^k.$$

Lorsque $(S_n(A))$ admet une limite coefficient par coefficient, on note e^A cette limite.

(1) Montrer que, si $D=\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$ est diagonale, alors e^D existe et vaut

$$e^D = \begin{pmatrix} e^a & 0 & 0 \\ 0 & e^b & 0 \\ 0 & 0 & e^c \end{pmatrix}.$$

- (2) Dans cette question, la matrice A est donnée par $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
 - (a) Calculer A^2 et A^3 puis, pour tout entier k supérieur ou égal à 3, déterminer A^k .
 - (b) Donner, pour tout entier n supérieur ou égal à 2, l'expression de $S_n(A)$. En déduire l'existence et l'expression de la matrice e^A .
- (3) Dans cette question, la matrice A est donnée par $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
 - (a) Calculer A^2 .
 - (b) A l'aide d'un raisonnement par récurrence, déterminer pour tout k de \mathbb{N} l'expression de A^k en fonction de k.
 - (c) Établir, pour tout entier naturel n, l'égalité suivante

$$S_n(A) = I + \frac{1}{3} \left(\sum_{k=0}^n \frac{3^k}{k!} - 1 \right) A.$$

(d) En déduire que e^A existe et que

$$e^A = I + \frac{e^3 - 1}{3}A.$$

(4) Dans cette question, la matrice A est donnée par $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 3 \end{pmatrix}$.

Printemps 2020 5

(a) Déterminer les valeurs propres de A. Justifier que A est diagonalisable et expliciter une matrice diagonale D et une matrice inversible P telles que

$$A = PDP^{-1}$$
.

- (b) En déduire une expression de $S_n(A)$ en fonction de n.
- (c) Conclure que e^A existe et l'expliciter.
- (5) Plus généralement, si A est une matrice diagonalisable, que dire de e^A ?

Exercice

Pour tout entier n strictement positif, on considère l'expérience suivante : on dispose de n urnes initialement vides, numérotées de 1 à n et on dispose d'un grand stock de boules que l'on dépose une à une dans ces urnes.

Pour chaque boule, on choisit au hasard, de façon équiprobable, l'urne dans laquelle la boule est déposée.

On note X_n le rang du premier tirage après lequel une des urnes contiendra deux boules et, pour $i \in [1; n]$, on note U_i le numéro de l'urne dans laquelle on place la boule numéro i.

- (1) Reconnaître la loi de U_i .
- (2) Compléter la fonction SciLab suivante pour qu'elle simule une réalisation de la variable aléatoire X_n :

```
function X = tirage(n)
   urnes = zeros(1,n)
   X = 1
   choix =
        while
        urnes(choix) = urnes(choix)+1
        choix =
        X = .....
   end
endfunction
```

- (3) On suppose dans cette question que n = 1. Déterminer la loi de X_1 ainsi que son espérance et sa variance.
- (4) On suppose dans cette question que n = 2. Déterminer la loi de X_2 ainsi que son espérance et sa variance.
- (5) On se place ici dans le cas général, n désigne un entier strictement positif.
 - (a) Justifier brièvement que $X_n(\Omega) = [2, n+1]$.
 - (b) On introduit les évènements A_i "l'urne choisie au i-ème tirage est différente des i-1 urnes choisies précédemment". Justifier que, pour $k \in [2; n+1]$,

$$P(X_n > k - 1) = P(A_1 \cap A_2 \cap \cap A_{k-1}),$$

puis, à l'aide de la formule des probabilités composées, calculer $P(X_n > k - 1)$.

(c) Montrer que

$$\forall k \in [2, n+1], \quad P(X_n = k) = \frac{n!(k-1)}{n^k(n-k+1)!}.$$

(d) En déduire la formule

$$\sum_{j=1}^{n} \frac{j}{n^{j}(n-j)!} = \frac{1}{(n-1)!}.$$