Math ECG 2. 2022-2023

Mathématiques Appliquées - F. Gaunard http://frederic.gaunard.com ENC Bessières, Paris 17e.

Devoir surveillé n°3 - sujet A

Samedi 3 Décembre Durée : 4 heures

Les questions précédées de (*) sont réservées aux khubes.

Exercice 1

Une urne contient des boules blanches (en proportion p), des boules noires (en proportion q) et des boules rouges (en proportion r). On a donc p+q+r=1 (on suppose que $p,q,r\in]0;1[$). On effectue des tirages successifs **avec remise** dans cette urne. Pour $i\in \mathbb{N}^*$, on note T_i la variable qui vaut 1 si la i-ème boule tirée est blanche, -1 si elle est noire et 0 si elle est rouge.

Les tirages étant effectués avec remise, les variables (T_i) sont donc mutuellement indépendantes.

Partie A

On note ensuite X_1 la variable aléatoire égale au numéro du tirage qui amène pour la première fois une boule blanche et X_2 celui correspondant au tirage où sort pour la première fois la **deuxième** boule blanche.

Par exemple, si les premiers tirages donnent *Noire*, *Rouge*, *Noire*, *Blanche*, *Rouge*, *Blanche*, ..., on a $X_1 = 4$ et $X_2 = 6$.

- (1) Expliciter, pour tout $i \in \mathbb{N}^*$, la loi de T_i . Calculer son espérance et sa variance.
- (2) Reconnaître la loi de X_1 . Rappeler son espérance et sa variance.
- (3) Compléter la fonction Python suivante, afin qu'elle simule les variables X_1 et X_2 . Pourquoi la fonction ne prend-elle en argument que a proportion p de boules blanches?

```
import numpy as np
import numpy.random as rd

def simul_X1_X2(p):
    x1=.....
    while .......
    x2=......
    while .......
    return [x1, x2]
```

- (4) (a) Expliciter la loi conjointe du couple (X_1, X_2) .
 - (b) En déduire la loi marginale de X_2 .

2 3 Décembre

- (c) Montrer que X_2 admet une espérance et que $E(X_2) = \frac{2}{p}$.
- (5) On note $U_2 = X_2 X_1$.
 - (a) Pour $j \in \mathbb{N}^*$, déterminer $P(U_2 = j)$. En déduire que X_1 et U_2 suivent la même loi, puis que U_2 admet une variance et préciser sa valeur.
 - (b) Montrer que U_2 est indépendante de X_1 .
 - (c) Exprimer X_2 en fonction de U_2 et X_1 et en déduire que X_2 admet une variance qu'on explicitera.
 - (d) Que vaut $cov(X_1, X_2)$? Les variables X_1 et X_2 sont-elles indépendantes?
 - (e) On rajoute les instructions Python suivantes à la suite de la fonction précédente. Que peut-on prévoir quant à l'affichage après exécution de celles-ci?

```
p=1/4;
L=[]; M=[];
for k in range(10000):
        [X1, X2] = simul_X1_X2(p)
        L=L.append(X1)
        M=M.append(X2)
U=[M[k]-L[k] for k in range(10000)]
print(np.mean([L[k]*U[k] for k in range(10000)])-np.mean(L)*np.mean(U))
```

Partie B

On note, pour $n \in \mathbb{N}^*$, $S_n = T_1 + ... + T_n$.

- (6) Quelle est la loi de S_1 ? Préciser son espérance et sa variance.
- (7) Expliciter l'espérance et la variance de S_n .
- (8) Soit t > 0. On pose $V_n = t^{S_n}$.
 - (a) Déterminer la loi, l'espérance et la variance de V_1 .
 - (b) En déduire l'expression de $E(V_n)$.

Exercice 2

On rappelle que deux matrices A et B de $\mathcal{M}_3(\mathbb{R})$ sont dites semblables lorsqu'il existe une matrice P de $\mathcal{M}_3(\mathbb{R})$ inversible telle que $B = P^{-1}AP$.

L'objectif de cet exercice est d'étudier des exemples de matrices inversibles qui sont semblables à leur inverse. Les trois parties de cet exercice sont indépendantes entre elles.

Partie A: Premier exemple

On considère l'endomorphisme φ de \mathbb{R}^3 dont la matrice dans la base canonique est la matrice

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1/2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

(1) Justifier que φ est un automorphisme.

DS 3 - sujet A. 3

(2) Déterminer trois vecteurs u, v et w de $\mathcal{M}_{3,1}(\mathbb{R})$ tels que

$$\operatorname{Ker}(A-I) = \operatorname{Vect}(u), \quad \operatorname{Ker}\left(A - \frac{1}{2}I\right) = \operatorname{Vect}(v), \quad \operatorname{et} \quad \operatorname{Ker}(A-2I) = \operatorname{Vect}(w).$$

- (3) Vérifier que la famille $\mathcal{B}' = (u, v, w)$ forme une base de $\mathcal{M}_{3,1}(\mathbb{R})$ et préciser la matrice D de φ dans cette base.
- (4) En déduire une matrice P, inversible, telles que $A = PDP^{-1}$. Expliciter la matrice D^{-1} .
- (5) On note $Q = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. Calculer Q^2 et QDQ.
- (6) En déduire que les matrices A et A^{-1} sont semblables.

Partie B : Deuxième exemple

On considère f l'endomorphisme de \mathbb{R}^3 défini par :

$$\forall (x, y, z) \in \mathbb{R}^3, f(x, y, z) = (x, -z, y + 2z).$$

On note M la matrice de f dans la base canonique de \mathbb{R}^3 .

On considère également les vecteurs u_1 et u_2 de \mathbb{R}^3 définis par : $u_1 = (1,0,0)$ et $u_2 = (0,1,-1)$.

- (7) Expliciter la matrice M et montrer que M est inversible.
- (8) (a) Montrer que (u_1, u_2) forme une base de Ker(f id).
 - (b) Déterminer un vecteur u_3 de \mathbb{R}^3 tel que : $f(u_3) u_3 = u_2$.
 - (c) Montrer que la famille $\mathcal{B}_1 = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .

On admet que $\mathcal{B}_2 = (u_1, -u_2, u_3)$ est également une base de \mathbb{R}^3 .

- (9) (a) Écrire la matrice M_1 de f dans la base \mathcal{B}_1 et la matrice M_2 de f dans la base \mathcal{B}_2 .
 - (b) Justifier que les matrices M_1 et M_2 sont semblables, et calculer M_1M_2 .
- (10) En déduire que les matrices M et M^{-1} sont semblables.

Partie C: Troisième exemple

On considère la matrice T de $\mathcal{M}_3(\mathbb{R})$ définie par : $T = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ et on pose $N = T - I_3$.

- (11) Justifier que la matrice T est inversible.
- (12) (a) Calculer N^3 et $(I_3 + N)(I_3 N + N^2)$. (b) En déduire une expression de T^{-1} en fonction de I_3, N et N^2 .
- (13) On note g l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est N.
 - (a) Justifier qu'il existe un vecteur u de \mathbb{R}^3 tel que $g \circ g(u) \neq 0$ et $g \circ g \circ g(u) = 0$.
 - (b) Montrer que la famille $\mathcal{B}_3 = (g \circ g(u), g(u), u)$ est une base de \mathbb{R}^3 .
 - (c) Écrire la matrice de g dans la base \mathcal{B}_3 .
 - (d) Calculer $N^2 N$ et en déduire que les matrices N et $N^2 N$ sont semblables.
- (14) Montrer que les matrices T et T^{-1} sont semblables.

4 3 Décembre

Exercice 3

Partie I : Étude de deux suites

Pour tout entier naturel n non nul, on pose :

$$u_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$$
, et $v_n = u_n - \frac{1}{n}$.

- (1) Soit f la fonction définie sur \mathbb{R}^{+*} par $f(x) = \frac{1}{x+1} + \ln(x) \ln(x+1)$.
 - (a) Déterminer $\lim_{x\to 0} f(x)$ et $\lim_{x\to +\infty} f(x)$.
 - (b) Étudier les variations de la fonction f sur \mathbb{R}^{+*} et dresser son tableau de variations.
 - (c) Démontrer que, pour tout $n \in \mathbb{N}^*$, $u_{n+1} u_n = f(n)$.
 - (d) En déduire la monotonie de la suite (u_n) .
 - (e) Écrire une fonction Python d'en-tête def suite_u(n) : qui prend en argument un entier naturel n non nul et qui renvoie la valeur de u_n .
- (2) (a) Montrer que

$$\forall n \in \mathbb{N}^*, \quad v_{n+1} - v_n = \frac{1}{n} - \ln\left(1 + \frac{1}{n}\right).$$

- (b) Montrer que pour tout réel x positif, $\ln(1+x) \le x$. En déduire que la suite (v_n) est croissante.
- (c) Donner le développement limité d'ordre 2 de ln(1+x) en 0. En déduire que

$$v_{n+1} - v_n \underset{n \to +\infty}{\sim} \frac{1}{2n^2}.$$

- (d) Déterminer la nature de la série de terme général $v_{n+1} v_n$. On note $\gamma = \sum_{n=1}^{+\infty} (v_{n+1} v_n)$.
- (e) Pour $n \ge 2$, simplifier la somme partielle : $\sum_{k=1}^{n-1} (v_{k+1} v_k).$

En déduire que la suite $(v_n)_{n\geq 2}$ converge vers γ .

- (3) (a) Déterminer $\lim_{n\to\infty} u_n$.
 - (b) Montrer que

$$\forall n \in \mathbb{N}^*, \quad v_n \le \gamma \le u_n$$

puis que

$$\forall n \in \mathbb{N}^*, \quad |u_n - \gamma| \le \frac{1}{n}.$$

(c) On rappelle que la commande floor(x) de la bibliothèque numpy (que l'on suppose importée sous le raccourci np) renvoie la partie entière d'un réel x et on suppose que la fonction suite_u de la Question (1e) a été correctement programmée. Que renvoie la fonction cidessous

```
def mystere(eps):
    n=np.floor(1/eps)+1
    return suite_u(n)
```

Partie II: Étude d'une série

Pour tout entier naturel n, on pose $a_n = \frac{1}{n(2n-1)}$.

- (4) Démontrer que la série de terme général a_n converge.
- (5) (a) Justifier que:

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=1}^n \frac{1}{2k-1} = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^n \frac{1}{2k}.$$

(b) Déterminer deux réels α et β tels que :

$$\forall n \in \mathbb{N}^*, \quad a_n = \frac{\alpha}{n} + \frac{\beta}{2n-1}.$$

(c) En déduire que :

$$\forall n \in \mathbb{N}^*, \qquad \sum_{k=1}^n a_k = 2 \sum_{k=n+1}^{2n} \frac{1}{k}.$$

(6) (a) Montrer que

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=n+1}^{2n} \frac{1}{k} = u_{2n} - u_n + \ln(2).$$

où (u_n) est la suite définie dans la Partie I.

- (b) Calculer alors $\sum_{k=1}^{+\infty} a_k$.
- (7) (a) Montrer que

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=n+1}^{2n} \frac{1}{k} = \frac{1}{n} \sum_{k=1}^n \frac{1}{1 + \frac{k}{n}}.$$

(b) Retrouver alors le résultat de la Question (6b)