Khôlles de Mathématiques - F. Gaunard http://frederic.gaunard.com Paul Valéry, Paris 12ème.

Planche de khôlles n°1

Semaine du 05/12

Question de cours

Pour
$$x \ge 0$$
 et $n \in \mathbb{N}^*$, on pose $f_n(x) = \frac{n}{1 + n(1+x)}$.

Montrer que $(f_n(x))$ converge simplement sur $[0; +\infty[$ vers une fonction f à déterminer. Montrer que la convergence sur ce même intervalle est uniforme.

Exercice 1

Soit $(f_n)_{n\geq 1}$ la suite de fonction définie sur [0;1] par $f_n(x)=\frac{2^nx}{1+2^nnx^2}$.

- (1) Montrer que (f_n) converge simplement sur [0;1] vers une fonction f à déterminer.
- (2) Pour tout $n \in \mathbb{N}^*$, calculer puis déterminer un équivalent lorsque $n \to +\infty$ (de) l'intégrale

$$I_n = \int_0^1 f_n(t) \mathrm{d}t.$$

(3) La convergence de (f_n) vers f sur [0;1] est-elle uniforme?

Exercice 2

On considère $E = \mathbb{R}_2[X]$ muni du produit scalaire

$$\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt.$$

- (1) Déterminer une base orthonormée du sous-espace $\mathbb{R}_1[X]$ pour ce produit scalaire.
- (2) Calculer $\inf_{a,b\in\mathbb{R}} \int_0^1 (t^2 at b)^2 dt$.

Khôlles de Mathématiques - F. Gaunard http://frederic.gaunard.com Paul Valéry, Paris 12ème.

Planche de khôlles n°2

Semaine du 05/12

Question de cours

Dans \mathbb{R}^3 muni de sa structure euclidienne canonique, déterminer la distance de u=(3,4,5) au plan P d'équation $P=\{(x,y,z)\in\mathbb{R}^3:\ 2x+y-z=0\}$.

Exercice 1

On considère la suite de fonctions $(f_n)_{n\geq 1}$ définie sur [0;1] par $f_n(x)=\frac{x}{1+n^2x^2}$.

- (1) Montrer que (f_n) converge simplement puis uniformément sur [0;1] vers une fonction f à déterminer.
- (2) Justifier que f_n est dérivable sur [0;1] et que la suite de fonctions $(f'_n)_{n\geq 1}$ converge simplement sur [0;1] vers une fonction g.
- (3) Vérifier que $f \neq g$. Quel est alors l'intérêt de cet exercice ?

Exercice 2

Soient E un espace euclidien et p un projecteur de E. On cherche à montrer que

p est un projecteur orthogonal \iff $(\forall x \in E, \quad ||p(x)|| \le ||x||)$.

- (1) Montrer le sens \Rightarrow .
- (2) On suppose que, pour tout $x \in E$, on a $||p(x)|| \le ||x||$.
 - (a) Soient $x \in \text{Im}(p)$ et $y \in \text{Ker}(p)$. Montrer que l'application $t \in \mathbb{R} \mapsto ||x + ty||^2$ est dérivable et qu'elle est minimale en 0.
 - (b) Conclure.

Khôlles de Mathématiques - F. Gaunard http://frederic.gaunard.com Paul Valéry, Paris 12ème.

Planche de khôlles n°3

Semaine du 05/12

Question de cours

Dans \mathbb{R}^3 muni de sa structure euclidienne canonique, orthonormaliser, par le procédé de Schmidt, la base

$$u = (1, 0, 1), \quad v = (1, 1, 1), \quad w = (-1, -1, 0).$$

Exercice 1

Dans tous les exercice, on considère $a_0, a_1, ... a_n$ des réels **distincts**. On introduit, pour $P, Q \in E = \mathbb{R}_n[X]$ l'application φ définie sur $E \times E$ par

$$\varphi(P,Q) = \sum_{i=1}^{n} P(a_i)Q(a_i)$$

- (1) Montrer que φ définit un produit scalaire sur E.
- (2) On introduit la famille $(P_k)_{0 \le k \le n}$ définie par

$$\forall k \in [0, n], \qquad P_k(X) = \prod_{j \in [0, n] \setminus \{k\}} (X - a_j).$$

- (a) Vérifier que (P_k) est une famille orthogonale.
- (b) Pour tout $k \in [0, n]$, déterminer $||P_k||$.
- (c) On considère le sous-espace

$$H = \{ P \in E : \sum_{k=0}^{n} P(a_k) = 0 \}$$

- (i) Montrer que H est un hyperplan de E.
- (ii) Déterminer une base (R) de H^{\perp} .
- (iii) Soit $Q \in E$. Exprimer la distance de Q à H.

Exercice 2

Soit (f_n) la suite de fonctions définie sur [0;1] par, pour tout $n \in \mathbb{N}^*$, $f_n(x) = \begin{cases} n^2x(1-nx), & \text{si } 0 \leq x \leq \frac{1}{n} \\ 0, & \text{sinon} \end{cases}$

- (1) Montrer que (f_n) converge simplement sur [0;1] vers une fonction f à préciser.
- (2) Pour tout $n \in \mathbb{N}^*$, $\int_0^1 f_n(t) dt$.
- (3) La convergence de (f_n) vers f est-elle uniforme sur [0;1]?