Math ECG 2. 2022-2023

Mathématiques Appliquées - F. Gaunard http://frederic.gaunard.com ENC Bessières, Paris 17e.

T.P. $n^{\circ}2$

Statistiques. Régression linéaire. Manipulation de fichiers .csv

Bibliothèques et librairies utilisées : numpy, numpy.random, matplotlib.pyplot et pandas.

1 Pré-requis

Dans tout le T.P, on utilise la bibliothèque pandas qui permet la lecture de fichiers .csv (Comma Separated Values) et la création/manipulation de tables. Si certaines commandes et instructions seront rappelées ci-après, on renvoie au cours de première année pour tout le détail. On importe une fois pour toutes

import pandas as pd

On va utiliser comme document de travail, tout au long de ce TP, le fichier tp2_data.csv, qui regroupe tout un tas de données publiques récupérées sur le site World Bank Data. En particulier, pour la période (1960-2020) et dans le Monde entier

- le taux de fertilité des jeunes femmes (nombre d'enfants pour 1000 jeunes femmes entre 15 et 19 ans),
- le pourcentage (du groupe concerné) de jeunes femmes étant scolarisé dans l'enseignement secondaire,
- l'espérance de vie,
- le pourcentage de population ayant accès à l'électricité,
- les émissions de CO₂ (en kT),
- la consommation électrique moyenne per capita (en KWh par habitant),
- la surface de forêt (en km^2).

On commence donc par importer le fichier susmentionné dans Python avec la commande

Ici, on rajoute l'argument sep='; car les données du fichier sont séparées avec un point virgule.

$\dot{\mathbf{A}}$ retenir!

La variable données est alors une $table\ de\ données\ (ou\ DataFrame).$ On rappelle que

- donnees.head permet de n'afficher que les 5 premiers rangs du tableau;
- donnees.shape renvoie une couple (n, p) où n est le nombre de lignes et p le nombre de colonnes du tableau;
- donnees.columns permet d'afficher l'ensemble des colonnes du tableau.

- Une colonne intitulée index est ajoutée par la bibliothèque pandas à la table de données lors de sa lecture afin de donner un numéro à chaque ligne de la table de données (la numérotation commençant comme toujours avec Python à 0).
- Notre jeu de données manipulé ici est (relativement) grand. Il contient 8 colonnes et 61 lignes... On va dans un premier temps ne considérer qu'une sous-table.

2 Statistiques descriptives

2.1 Rappels : statistiques univariées

Pour décrire un jeu de données $x = [x_1, x_2, ..., x_n]$, on introduit quelques mesures:

• La moyenne (empirique) (Mean Value en anglais), souvent notée \overline{x}_n définie par

$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

À retenir!

Si la commande mean de bibliothèque numpy permet d'obtenir la moyenne des valeurs d'une liste, il faut ici faire attention; on travaille avec DataFrame et il faut donc utiliser la commande table1.mean() qui renvoie la liste des moyennes pour chaque colonne numérique ou plus précisément table1['nom_de_la_colonne'].mean() pour obtenir la moyenne des valeurs d'une colonne précise.

• La variance empirique

$$\hat{\sigma}_n^2(x) = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2$$

Il s'agit de la moyenne des carrées des écarts à la moyenne. Cette valeur n'est pas facile à interpréter car son unité de mesure n'est pas la même que celle des données. C'est pourquoi, pour l'interprétation (et notamment en statistiques descriptives), on lui préfère la mesure suivante.

• L'écart-type empirique (Standard Deviation en anglais)

$$\hat{\sigma}_n(x) = \sqrt{\hat{\sigma}_n^2(x)}$$

Cette mesure permet de quantifier la dispersion des observations autour de la moyenne et a l'avantage de s'exprimer dans la même unité de grandeur que nos données.

À retenir!

Avec les *DataFrames*, on utilise la commande table1.std() ou table1['nom_de_la_colonne'].std() sur le même modèle que précédemment.

• La **médiane** de la série statistique. Il s'agit de la valeur m telle que 50% des données sont inférieures à m et 50% supérieures à m. Intuitivement, la médiane est le point milieu des observations (à ne pas confondre avec le point moyen).

TP 2.

À retenir!

Avec les *DataFrames*, on utilise la commande table1.median() ou table1['nom_de_la_colonne'].median() sur le même modèle que précédemment.

- On s'intéresse aussi parfois à d'autres **quantiles**. On note q_{α} le quantile d'ordre α qui désigne le réel tel qu'une proportion α des observations est inférieure à q_{α} et une proportion 1α est supérieure à q_{α} . La médiane est le quantile d'ordre 1/2.
- Le **minimum** ou le **maximum** de la série statistique qui correspond à la plus petite (ou la plus grande valeur) des observations.

À retenir!

Avec les *DataFrames*, on utilise les commande table1.min() ou table1.max() sur le même modèle que précédemment.

2.2 Nuage de points, point moyen

On cherche maintenant à savoir s'il est possible d'expliquer une série de données à partir d'une autre. Par exemple, le pourcentage de jeunes femmes scolarisées peut-il expliquer le nombre moyen d'enfant (pour 1000) des jeunes femmes entre 15 et 19 ans?

Plus généralement, on considère deux séries statistiques $x = [x_1, ..., x_n]$ et $y = [y_1, ..., y_n]$ que l'on observe **simultanément**. On étudie alors les couples $[(x_1, y_1), ..., (x_n, y_n)]$ que l'on appelle observations dans le cas de statistiques bivariées.

Définition

On appelle **nuage de points** associé à la série statistique (x,y) l'ensemble des points M_k de coordonnées (x_k, y_k) (pour $1 \le k \le n$) tracés dans un repère orthonormé du plan (où $X = (x_k)$ et $Y = (y_k)$).

Le **point moyen** du nuage est le point de coordonnées $(\overline{x}_n, \overline{y}_n)$, où \overline{x}_n désigne la moyenne empirique des x_k et \overline{y}_n celle des y_k .

L'examen du nuage de points permet de faire des constatations qualitatives:

- est-il concentré ou dispersé?
- relève-t-on une tendance?
- y a-t-il des valeurs *a priori* aberrantes?

On reprend notre jeu de données sur la fertilité adolescente. Recopier et exécuter les instructions suivantes. Commenter.

```
import matplotlib.pyplot as plt

table1=table1.dropna() # on supprime les rangs avec données manquantes

X=table1['FSS']
Y=table1['TF']

plt.grid()
plt.plot(X,Y, 'k+')
plt.show()
```

Quelles commandes peut-on ajouter pour faire apparaître le point moyen du nuage?

Définition

La **covariance empirique** d'une série statistique (x, y) est définie par

$$cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_n)(y_i - \overline{y}_n).$$

Le coefficient de corrélation linéaire empirique est défini par

$$\rho_{x,y} = \frac{\text{cov}(x,y)}{\hat{\sigma}_n(x)\hat{\sigma}_n(y)}$$

Calculer le coefficient de corrélation linéaire des séries X et Y considérées ci-avant. Commenter.

3 Régression

3.1 Droite de régression linéaire. Méthode des moindres carrées

On se place dans la situation où l'on souhaite savoir on peut trouver une "formule" permettant de donner une approximation de Y en fonction de X. Cette formule pouvant notamment servir à faire de la prévision.

On rappelle alors le résultat suivant.

Résultat du cours de 2A

Soit ρ le coefficient de corrélation linéaire du couple (X,Y). Alors

- (i) $\rho \in [-1; 1];$
- (ii) $\rho = \pm 1$ si et seulement si la régression Y = aX + b est exacte.
- Il parait alors assez naturel de penser que si ρ est "assez proche" de 1 (en valeur absolue), l'approximation affine pourrait être pertinente.

À retenir!

Si $|\rho|$ est proche de 1 et qu'on a visualisé une relation linéaire entre les données, on peut confirmer qu'il y a bien corrélation linéaire entre X et Y.

- En sciences humaines et en sciences économiques, une valeur de $|\rho|$ de l'ordre de 0,85 est souvent considérée comme bonne.
 - \square On cherche donc deux constante a et b telles que

$$Y = aX + b + \varepsilon$$
.

On utilise alors la méthode des moindres carrés qui nous donne l'équation de la droite la plus proche des points en terme de distance, c'est à dire l'unique droite D d'équation y = ax + b qui rend minimale la somme des carrés des erreurs d'ajustement

$$d^{2}(a,b) = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - (ax_{i} + b))^{2}.$$

Le résultat suivant donne la valeur de a et b et est **admis**. On en proposera une démonstration dans un devoir maison d'approfondissement.

TP 2.

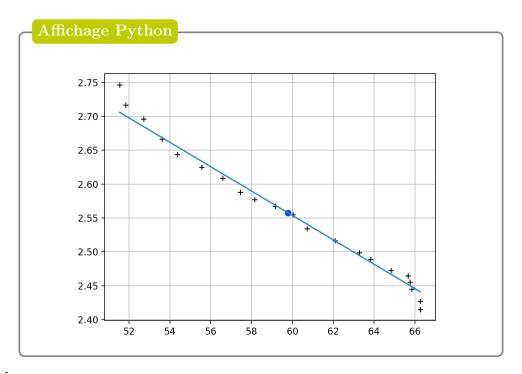
À retenir!

Droite de régression. La droite la plus proche du nuage de points associé au couple (x, y) est la droite d'équation y = ax + b avec

$$a = \frac{\operatorname{cov}(x, y)}{\hat{\sigma}_n^2(x)}, \quad \text{et} \quad b = \overline{y}_n - a \times \overline{x}_n.$$

En particulier, cette droite passe par le point moyen $(\overline{x}_n, \overline{y}_n)$.

Écrire une suite d'instructions permettant de représenter la droite de régression linéaire de Y en fonction de X, sur la même figure que le nuage de point (ainsi que le point moyen), comme ci-dessous.



Exercice 1. Étudier la pertinence d'une régression linéaire pour expliquer l'espérance de vie en fonction de l'accès à l'électricité (pour les années où les données sont fournies).

3.2 Régression linéaire avec transformations

Dans certains cas (qui seront pour nous complètement guidés par l'énoncé du sujet), on peut appliquer le principe de régression linéaire à un couple obtenu par transformées de Y (ou aussi de X) et obtenir une relation de la forme

$$Y = a\varphi(X) + b + \varepsilon$$
, ou $\varphi(Y) = a\varphi(X) + b + \varepsilon$.

Considérons un exemple avec des données correspondant à l'évolution du PIB par habitant (en USD) et du pourcentage de la population en zone urbaine de la Norvège, de 1960 à 2020 (source: World Bank Data).

(1) Recopier et exécuter les instructions suivantes. Commenter le nuage de points.

- (2) Représenter le nuage de points (ln(X), Y).
- (3) Calculer le coefficient de corrélation linéaire de Y en ln(X).
- (4) Déterminer l'équation de la droite de régression de Y en ln(X).
- (5) En déduire qu'on peut supposer que la dépendance entre Y et X est de la forme

$$Y = a\ln(X) + b$$

(6) Représenter le nuage de points précédent sur lequel on fera apparaître la courbe d'équation $y = a \ln(t) + b$.

