Math 1NSD2. 2023-2024

F. Gaunard

http://frederic.gaunard.com

ENC Bessières, Paris 17e.

Devoir Maison n°1

Vacances d'Automne Durée : 2 heures

Si on veut s'entraîner en temps limité, ce devoir est à faire en deux heures. Mais on ne s'y attaquera qu'après avoir bien travaillé son cours (et refait les interrogations précédentes).

Exercice 1

Soit $n \in \mathbb{N}^*$.

- (1) Vérifier que, $\sum_{k=1}^{n} k2^k = \sum_{k=1}^{n} \sum_{j=1}^{k} 2^k$.
- (2) En permutant l'ordre de sommation, en déduire l'expression de $\sum_{k=1}^{n} k2^{k}$. Vérifier la formule par récurrence.

Exercice 2

On considère la suite (u_n) définie, pour $n \in \mathbb{N}$, par $u_0 = \frac{1}{2}$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n^2 - u_n \ln(u_n)$.

- (1) On introduit la fonction $f: x \mapsto x^2 x \ln(x)$.
 - (a) Déterminer l'ensemble de définition \mathcal{D}_f de f.
 - (b) Déterminer les limites de f aux extrémités de son ensemble de définition.
 - (c) On admet que f est deux fois dérivable sur \mathcal{D}_f . Expliciter, pour $x \in \mathcal{D}_f$, f'(x) et f''(x).
 - (d) Dresser le tableau de variations de f.
- (2) (a) Montrer que, pour tout $n \in \mathbb{N}$, u_n est bien défini et que $1/2 \le u_n \le 1$.
 - (b) Montrer que (u_n) est croissante.
 - (c) Montrer que (u_n) converge vers une certaine limite ℓ dont on donnera un encadrement.
- (3) Montrer que la fonction $g: x \mapsto x \ln(x) 1$ est strictement croissante sur [1/2; 1] et vérifie g(1) = 0. En déduire que

$$\forall x \in \left[\frac{1}{2}; 1\right], \qquad g(x) = 0 \Longleftrightarrow x = 1.$$

(4) En déduire la valeur de ℓ .

Exercice 3

On considère les deux suites (S_n) et (T_n) définies pour $n \in \mathbb{N}^*$, par

$$S_n = \sum_{k=0}^n \frac{1}{k!}$$
, et $T_n = S_n + \frac{1}{n!}$.

- (1) Montrer que, pour tout $n \in \mathbb{N}^*$, $n! \geq n$. En déduire une démonstration du fait que $n! \longrightarrow +\infty$, lorsque $n \to +\infty$.
- (2) Montrer que les suites (S_n) et (T_n) sont adjacentes.
- (3) En déduire que (S_n) et (T_n) convergent vers une même limite ℓ et qu'on a, pour tout $n \in \mathbb{N}^*$, on a l'encadrement $S_n \leq \ell \leq T_n$.
- (4) On introduit alors, pour $n \in \mathbb{N}^*$, les fonctions f_n et g_n définies sur [0; 1] par

$$f_n(x) = e^x - \sum_{k=0}^n \frac{x^k}{k!}, \qquad g_n(x) = f_n(x) - (e-1)\frac{x^n}{n!}.$$

(a) On admet que f_n et g_n sont dérivables partout et pour tout $n \in \mathbb{N}$. Montrer que, pour tout $n \in \mathbb{N}$, $f'_{n+1} = f_n$. En déduire, par récurrence, que

$$\forall n \in \mathbb{N}, \quad \forall x \in [0; 1], \qquad f_n(x) \ge 0.$$

(b) Montrer que pour tout $n \in \mathbb{N}$, pour tout $x \in [0, 1]$, on a $g_n(x) \leq 0$. En déduire que

$$\forall n \in \mathbb{N}, \quad \forall x \in [0; 1], \qquad f_n(x) \le (e - 1) \frac{x^n}{n!}.$$

(c) Montrer alors que, pour tout $n \in \mathbb{N}$,

$$0 \le e - S_n \le \frac{e - 1}{n!}.$$

(d) Conclure quant à la valeur de ℓ .

Exercice 4

On considère la suite (a_n) définie par

$$\begin{cases} a_0 = 0 \\ a_1 = -1 \\ a_2 = 5 \\ a_{n+3} = 3a_{n+2} - 4a_n \end{cases}$$

Ce type de suite s'appelle naturellement une suite récurrence linéaire d'ordre 3. Sans surprise, on lui associe l'équation

$$(E) q^3 = 3q^2 - 4.$$

- (1) On considère la fonction polynomiale f définie sur \mathbb{R} par $f(x) = x^3 3x^2 + 4$. Vérifier que f(-1) = 0. En déduire une fonction polynomiale g, de degré 2, telle que, pour tout $x \in \mathbb{R}$, on ait f(x) = (x+1)g(x).
- (2) Déterminer l'unique racine r_0 de g.
- (3) On admet alors qu'il existe des réels α, β et γ tels que

$$\forall n \in \mathbb{N}, \qquad a_n = \alpha(-1)^n + (\beta n + \gamma)r_0^n.$$

À l'aide des valeurs des trois premiers termes de la suite, déterminer α, β et γ .