Math ECG 2. 2023-2024

Mathématiques Appliquées - F. Gaunard http://frederic.gaunard.com ENC Bessières, Paris 17e.

Devoir surveillé n°3

Samedi 16 Décembre Durée : 4 heures

Dans tout le sujet, on suppose déjà importées sous leur alias habituels les bibliothèques Python usuelles.

```
import numpy as np
import numpy.random as rd
import numpy.linalg as al
import matplotlib.pyplot as plt
import pandas as pd
```

Exercice 1

Partie 1 : Une loi de probabilité à deux paramètres

Toutes les variables aléatoires intervenant dans cet exercice sont supposées définies sur un même espace probabilisé (Ω, \mathcal{A}, P) .

Soient p, q deux réels de]0;1[tels que p+q=1 et $n \in \mathbb{N}^*$.

On dispose d'une urne contenant des boules rouges en proportion p et des boules vertes en proportion q. On effectue dans cette urne une suite de tirages d'une boule avec remise jusqu'à ce que l'on ait pioché n boules rouges.

On suppose que les résultats des différents tirages sont indépendants.

Pour tout i de \mathbb{N}^* , on note R_i (resp. V_i) l'événement : " le i-ième tirage amène une boule rouge (resp. verte) ". Ainsi, on a : $\forall i \in \mathbb{N}^*$, $P(R_i) = p$ et $P(V_i) = q$.

On note Z la variable aléatoire qui prend la valeur du nombre de boules vertes obtenues avant l'apparition de la n-ième boule rouge. On admet qu'on définit bien une variable aléatoire.

- (1) Quel est, pour tout $n \in \mathbb{N}$, $Z(\Omega)$?
- (2) Dans cette question, et dans cette question seulement on suppose que n=1.
 - (a) Montrer que pour tout $k \in \mathbb{N}$, on a : $P([Z = k]) = pq^k$.
 - (b) (i) Montrer que la variable aléatoire Z+1 suit une loi géométrique de paramètre p.
 - (ii) En déduire que Z admet une espérance et que $E(Z) = \frac{q}{p}$.

2 16 Décembre

- (iii) En déduire que Z admet une variance et préciser sa valeur.
- (3) Dans cette question, et dans cette question seulement, on suppose que n = 2. On introduit alors les variables aléatoires X_1 et X_2 prenant pour valeurs respectives les rangs d'apparition de la première et de la deuxième boule rouge.
 - (a) Reconnaître la loi de X_1 .
 - (b) Déterminer la loi conjointe du couple (X_1, X_2) .
 - (c) En déduire la loi marginale de X_2 . Montrer alors que X_2 admet une espérance que l'on explicitera.
 - (d) Exprimer Z en fonction de X_2 .

En déduire que Z admet une espérance et qu'on a $E(Z) = \frac{2q}{p}$.

On dira qu'une variable aléatoire X suit la loi $\mathcal{BN}(n,p)$ si elle suit la même loi que Z. En particulier, on retiendra le résultat noté (\star) suivant, utile pour la suite : Si $X \hookrightarrow \mathcal{BN}(1,p)$, alors

$$(\star)$$
 $X(\Omega) = \mathbb{N}; \quad \forall n \in \mathbb{N}, \ P([X = n]) = pq^n \quad \text{et} \quad E(X) = \frac{q}{p}.$

(4) Recopier et compléter la fonction Python suivante de sorte qu'elle renvoie une simulation d'une variable aléatoire $Z \hookrightarrow \mathcal{BN}(n,p)$.

Partie 2: Un calcul statistique

Soit $N \in \mathbb{N}$. On rappelle que, si $(x_i)_{i \in [1,N]}$ et $(y_i)_{i \in [1,N]}$ sont deux séries statistiques,

- on désigne par \overline{x} (resp. \overline{y}) la moyenne empirique associée à (x_i) (resp. à (y_i));
- σ_x et σ_y désignent les écarts-types empiriques des séries (x_i) et (y_i) .
- cov(x, y) la covariance empirique de la série statistique double (x_i, y_i) ;
- $\rho(x,y)$ le coefficient de corrélation linéaire empirique de cette même série statistique double.
- (5) Rappeler les formules mathématiques définissant \overline{x} , σ_x^2 et cov(x,y) en fonction des x_i , des y_i et de n.

Rappeler les formules de König-Huyguens qui permettent de reformuler σ_x^2 et cov(x, y).

(6) Recopier et compléter la fonction Python suivante pour qu'elle renvoie la covariance empirique d'un couple de série statistique (x, y) en argument

```
def covariance(x,y) :
    prod = x*y
    return .....
```

Soient X_1, X_2 et X_3 trois variables aléatoires indépendantes de même loi $\mathcal{BN}(1, p)$. On pose : $T = X_1 + X_2$ et $W = X_2 + X_3$. DS 3.

3

Soit $N \in \mathbb{N}$. On souhaite construire deux séries statistiques (t_i) et (w_i) associées aux variables T et W (définies plus haut) et calculer leur coefficient de corrélation linéaire empirique.

(7) (a) Recopier et compléter la fonction Python suivante de sorte qu'elle renvoie un N—échantillon du couple (T, W) (c'est à dire un tableau à deux lignes qui sont respectivement des réalisations indépendantes des variables de T et W).

(b) On ajoute les commandes suivantes sont l'exécution produit l'affichage ci-après. Détailler ce qu'elles font. Que peut-on conjecturer ? (On rappelle que la commande np.arange(a,b,s) crée une liste de valeurs entre a et b avec un pas de s.)

```
N=1000
for q in np.arange(0.1, 1, 0.2)
  [T, W] = sample_TW(p, N)
  r = covariance(T,W)/np.sqrt(covariance(T,T)*covariance(W,W))
  print(r)
```

Affichage Python

- > > >
- 0.5082364877696511
- 0.4924050605018343
- 0.49424137980025185
- 0.5048354509961391
- 0.5350220088999194
- (8) (a) Montrer que $cov(T, W) = V(X_2)$. Les variables aléatoires T et W sont-elles indépendantes?
 - (b) Montrer que $V(T) = V(W) = 2V(X_2)$ puis calculer le coefficient de corrélation linéaire $\rho(T, W)$ des variables aléatoires T et W.

Votre conjecture de la Question 7b est-elle vérifiée?

Partie 3: Loi du maximum

Soient X et Y deux variables aléatoires indépendantes de même loi $\mathcal{BN}(1,p)$. On pose : $U = \max(X,Y)$ et $V = \min(X,Y)$.

(9) Montrer que la loi du couple (U, V) est donnée par :

$$\forall (i,j) \in \mathbb{N}^2, \ P([U=i] \cap [V=j]) = \begin{cases} 2p^2q^{i+j}, & \text{si } i > j \\ 0, & \text{si } i < j \\ p^2q^{2i}, & \text{si } i = j \end{cases}$$

- (10) (a) Montrer que : $\forall j \in \mathbb{N}, \ P([V=j]) = \sum_{i=j}^{+\infty} P([U=i] \cap [V=j]).$
 - (b) En déduire que : $\forall j \in \mathbb{N}, \ P([V=j]) = p(1+q)q^{2j}$.
 - (c) En déduire que V suit la loi $\mathcal{BN}(1,(1-q^2))$.

4 16 Décembre

- (d) En déduire que V admet une espérance et que $E(V) = \frac{q^2}{1 q^2}$.
- (11) (a) Justifier que U + V = X + Y.
 - (b) En déduire que U admet une espérance et expliquer (sans faire les calculs) comment on pourrait obtenir sa valeur.

Partie 4 : Partie entière d'une variable à densité

Soient S_1 et S_2 deux variables aléatoires indépendantes, et suivant toutes les deux la loi exponentielle de paramètre $\lambda > 0$. On pose $T_1 = \lfloor S_1 \rfloor$ la partie entière de S_1 et $T_2 = \lfloor S_2 \rfloor$ la partie entière de S_2 . On a donc :

$$\forall k \in \mathbb{N}, (T_1 = k) = (k \le S_1 < k + 1)$$
 et $(T_2 = k) = (k \le S_2 < k + 1).$

- (12) (a) Rappeler l'expression de la fonction de répartition de S_1 .
 - (b) Calculer $P(T_1 = k)$, pour $k \in \mathbb{N}$, et en déduire que T_1 suit la loi $\mathcal{BN}(1, p_{\lambda})$ où $p_{\lambda} = 1 e^{-\lambda}$. On remarquera que T_2 suit la même loi que T_1 .
- (13) (a) Justifier que T_1 et T_2 sont indépendantes.
 - (b) On note $q_{\lambda} = 1 p_{\lambda}$. Montrer que : $P(T_1 = T_2) = \sum_{k=0}^{+\infty} p_{\lambda}^2 q_{\lambda}^{2k}$.
 - (c) Calculer alors $P(T_1 = T_2)$ en fonction de p_{λ} et q_{λ} puis vérifier que $P(T_1 = T_2) = \frac{1 e^{-\lambda}}{1 + e^{-\lambda}}$.

Exercice 2

On considère l'endomorphisme g de $\mathcal{M}_{3,1}(\mathbb{R})$ dont la matrice dans la base canonique est donnée par

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 2 & -5 & 4 \\ 3 & -8 & 6 \end{pmatrix}.$$

- (1) (a) Expliciter A^2 puis établir que $A^4 = I$.
 - (b) En déduire les valeurs propres possibles de A. La matrice A est-elle inversible?
 - (c) Donner une base (u) de Ker(g Id). En déduire une (première) valeur propre de A.
 - (d) Montrer que A n'admet pas d'autre valeur propre.
 - (e) La matrice A est-elle diagonalisable?
- (2) (a) Quelle est la matrice de g^2 dans la base canonique de $\mathcal{M}_{3,1}(\mathbb{R})$?
 - (b) Résoudre l'équation $A^2X = -X$, d'inconnue $X \in \mathcal{M}_{3,1}$ et en déduire une base (v; w) de $\operatorname{Ker}(g^2 + \operatorname{Id})$.
 - (c) Montrer que la famille (u; v; w) forme une base de $\mathcal{M}_{3,1}(\mathbb{R})$.
 - (d) Écrire la matrice de g^2 dans la base (u; v; w).
 - (e) La matrice A^2 est-elle diagonalisable ?
- (3) On considère maintenant une matrice $M \in \mathcal{M}_3(\mathbb{R})$. Montrer que si M est diagonalisable, alors M^2 l'est aussi. Que dire, au vu de ce qui précède, de la réciproque de cette implication?

DS 3.

(4) On considère trois suites (u_n) , (v_n) et (w_n) définies par leur premiers termes $u_0 = a$, $v_0 = b$, $w_0 = c$ et, pour tout $n \in \mathbb{N}$,

$$\begin{cases} 3u_{n+1} = u_n - 2v_n + 2w_n \\ 3v_{n+1} = 2u_n - 3v_n + 2w_n \\ 3w_{n+1} = 2u_n - 2v_n + w_n \end{cases}$$

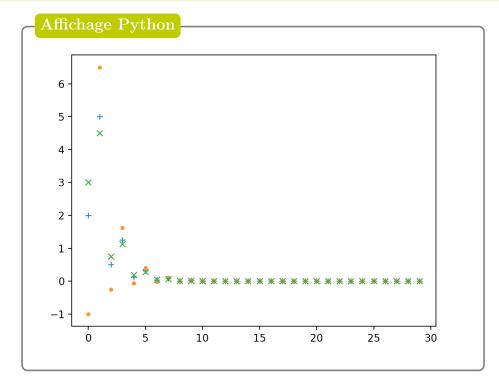
(a) (i) Recopier et compléter la fonction Python suivante qui renvoie les valeurs de u_n, v_n et w_n pour un entier n en argument.

```
def suites(n) :
    u=a
    v=b
    w=c
    for k in range(n) :
        x=......
        y=......
        z=......
        u, v, w = 1/3*x, 1/3*y, 1/3*z
    return u, v, w
```

5

(ii) On complète par les instructions suivantes dont l'exécution produit la figure ci-contre. Que peut-on conjecturer ?

```
U=np.zeros(30)
V=np.zeros(30)
W=np.zeros(30)
for k in range(30):
    U[k],V[k],W[k]=suites(k)
N=[k for k in range(30)]
plt.plot(N, U, '+')
plt.plot(N, V, '.')
plt.plot(N, W, 'x')
plt.show()
```



6 16 Décembre

- (b) Notant, pour $n \in \mathbb{N}$, $U_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$, déterminer une matrice B telle que, pour tout $n \in \mathbb{N}$, on ait $U_{n+1} = BU_n$.
- (c) Montrer que, pour tout $n \in \mathbb{N}$, on a $U_n = B^n U_0$.
- (d) Montrer que les trois suites convergent vers une même limite ℓ que l'on précisera.

Exercice 3

Partie 1 : Étude d'une (suite de) fonction(s)

Pour tout $n \in \mathbb{N}$, on définit la fonction $g_n : [0, +\infty[\to \mathbb{R} \text{ par } :$

$$g_n(x) = \frac{(\ln(1+x))^n}{(1+x)^2}.$$

- (1) (a) Étudier les variations de la fonction g_0 . On précisera la limite de g_0 en $+\infty$, ainsi que l'équation de la tangente en 0.
 - (b) Donner l'allure de la courbe représentative de g_0 .
- (2) (a) Pour $n \ge 1$, justifier que g_n est dérivable sur $[0, +\infty[$ et montrer que, pour tout $x \ge 0$,

$$g'_n(x) \geqslant 0 \iff n \geqslant 2\ln(1+x).$$

En déduire les variations de la fonction g_n lorsque $n \ge 1$.

- (b) Calculer soigneusement $\lim_{x\to+\infty} g_n(x)$.
- (c) Montrer que, pour $n \ge 1$, g_n admet un maximum sur $[0, +\infty[$ qui vaut

$$M_n = \left(\frac{n}{2e}\right)^n$$

et déterminer la limite de M_n lorsque n tend vers $+\infty$.

(d) Déterminer $\alpha > 1$ tel que, pour tout $n \geqslant 1$,

$$g_n(x) = o\left(\frac{1}{x^{\alpha}}\right), \quad x \to +\infty.$$

Partie 2 : Étude d'une suite d'intégrales

On pose pour tout $n \in \mathbb{N}$

$$I_n = \int_0^{+\infty} g_n(t) dt.$$

- (3) Montrer que l'intégrale I_0 est convergente et la calculer.
- (4) Montrer que pour tout entier $n \ge 1$, l'intégrale I_n est convergente.
- (5) À l'aide d'une intégration par parties, montrer que, pour tout $n \in \mathbb{N}$,

$$I_{n+1} = (n+1)I_n.$$

(6) En déduire que, pour tout $n \in \mathbb{N}$,

$$I_n = n!$$
.

DS 3.

Partie 3 : Une suite de variables aléatoires à densité

Pour tout $n \in \mathbb{N}$, on définit la fonction f_n sur \mathbb{R} par :

$$f_n(x) = \begin{cases} 0, & \text{si } x < 0\\ \frac{g_n(x)}{n!}, & \text{si } x \ge 0 \end{cases}$$

- (7) Montrer que f_n peut être considérée comme une densité de probabilité. On note X_n une v.a de densité f_n et F_n sa fonction de répartition.
- (8) Déterminer, pour tout $n \in \mathbb{N}$ et tout x < 0, $F_n(x)$.
- (9) Déterminer, pour $x \ge 0$, $F_0(x)$.
- (10) Soit $x \ge 0$ et $k \in \mathbb{N}^*$. Montrer que

$$F_k(x) - F_{k-1}(x) = -\frac{1}{k!} \frac{(\ln(1+x))^k}{1+x}.$$

- (11) En déduire une expression de $F_n(x)$ pour $x \ge 0$ et $n \in \mathbb{N}^*$ faisant intervenir une somme qu'on ne cherchera pas à calculer.
- (12) Pour $x \in \mathbb{R}_+$ fixé, déterminer la limite de $F_n(x)$ lorsque n tend vers $+\infty$.
- (13) (KHÛBES) La suite de variables aléatoires (X_n) converge-t-elle en loi?
- (14) On introduit alors la variable $Y_n = \ln(1 + X_n)$.
 - (a) Justifier que Y_n est bien définie, puis que $Y_n(\Omega) \subset \mathbb{R}_+$.
 - (b) Justifier que Y_n admet une espérance et la calculer.
 - (c) Justifier que Y_n admet une variance et la calculer.
 - (d) On note H_n la fonction de répartition de Y_n . Montrer que, pour tout $x \in \mathbb{R}$, on a

$$H_n(x) = F_n(e^x - 1).$$

- (e) En déduire que Y_n est une variable à densité et préciser une densité de Y_n .
- (f) Reconnaître la loi de Y_0 . Déduire de la **Partie 2**. que Y_0 admet, pour tout $k \in \mathbb{N}^*$, un moment d'ordre k et préciser sa valeur.