Mathématiques PT. 2024 - 2025

Mathématiques & Informatique - F. Gaunard http://frederic.gaunard.com Lycée Voltaire, Paris 11e.

Semaine de colle n°1

Du Lundi 09 Septembre au Vendredi 13 Septembre Planche n°1

Question de cours

Python. Écrire une fonction récursive d'en-tête def nb_termes_pos(L) qui prend en argument une liste L et renvoie le nombre de termes positifs ou nuls de cette liste.

Exercice 1

Résoudre dans $\mathbb R$ les équations suivantes :

i.
$$\cos(x) = \sqrt{3}\sin(x) + 1$$
.

$$ii. \cos(x) + \sin(x) = 1 + \tan(x).$$

Exercice 2

Soient a, b, c, d dans $[0, \pi]$.

1. Montrer $\sin(a) + \sin(b) \le 2 \sin\left(\frac{a+b}{2}\right)$. Quand y a-t-il égalité?

2. Montrer $\sin(a) + \sin(b) + \sin(c) + \sin(d) \le 4\sin\left(\frac{a+b+c+d}{4}\right)$.

3. En déduire $\sin(a) + \sin(b) + \sin(c) \le 3\sin\left(\frac{a+b+c}{3}\right)$.

Exercice 3

Après avoir vérifié que

$$i\binom{k}{i} = k\binom{k-1}{i-1},$$

calculer, pour $p, q \in]0, 1[$,

$$\frac{1}{n} \sum_{k=1}^{n} \left(k \sum_{i=1}^{k} \binom{k-1}{i-1} p^{i} q^{k-i} \right).$$

Exercice 4

On considère l'équation $(z+1)^5=(z-1)^5$ d'inconnue $z\in\mathbb{C}$.

- 1. Résoudre cette équation en développant.
- 2. Résoudre cette même équation en utilisant les racines cinquièmes de l'unité.
- 3. En comparant les deux résultats obtenus, déterminer une valeur exacte de $\cos\left(\frac{2\pi}{5}\right)$ et $\cos\left(\frac{4\pi}{5}\right)$.

Mathématiques PT. 2024 - 2025

Mathématiques & Informatique - F. Gaunard http://frederic.gaunard.com
Lycée Voltaire, Paris 11e.

Semaine de colle n°1

Du Lundi 09 Septembre au Vendredi 13 Septembre Planche n°2

Question de cours

Énoncer et démontrer par récurrence la formule du binôme de Newton.

Exercice 1

- 1. Soit $x \in \mathbb{R}$. Transformer $\cos(x) + 2\cos(2x) + \cos(3x)$ en produit.
- **2**. Résoudre l'équation $\cos(x) + 2\cos(2x) + \cos(3x) = 0$ d'inconnue $x \in]-\pi,\pi]$.

Exercice 2

Calculer, pour
$$x \in \mathbb{R}$$
, $x \not\equiv 0[\pi]$, $\sum_{k=0}^{n} \frac{\sin(kx)}{\cos^{k}(x)}$.

Exercice 3

On pose $j=e^{i\frac{2\pi}{3}},$ racine troisième de l'unité.

- 1. Calculer les valeurs de j^3 et de $1 + j + j^2$.
- **2.** Calculer successivement, pour k = 3p (avec $p \in \mathbb{N}$), k = 3p + 1 et k = 3p + 2, la valeur de la somme $S_k = 1 + j^k + (j^2)^k$.
- 3. Soit P un polynôme à coefficients complexes, de la forme $P = \sum_{k=0}^{n} a_k X^k$.

Calculer $P(X)+P(jX)+P(j^2X)$, qu'on exprimera en fonction des coefficients de P.

- **4. a.** Soit $\omega \in \mathbb{C}$ fixé. Développer et simplifier le polynôme $R_{\omega}(X) = (X \omega)(jX \omega) \left(j^2X \omega\right)$.
 - **b.** Soit le polynôme Q(X) = (X-1)(X-2)(X-3)(X-4). On lui associe le polynôme $T(X) = Q(X)Q(jX)Q(j^2X)$. Montrer qu'il existe un polynôme H à expliciter tel que tel que T(X) = H(Y).
 - \mathbf{c} . Déterminer de deux façons différentes les racines de T.

Exercice 4

Pour
$$n \in \mathbb{N}^*$$
, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$ et $u_n = \sum_{k=1}^n H_k$.

Montrer que, pour tout $n \in \mathbb{N}^*$, $u_n = (n+1)H_n - n$.

Mathématiques PT. 2024 - 2025

Mathématiques & Informatique - F. Gaunard http://frederic.gaunard.com
Lycée Voltaire, Paris 11e.

Semaine de colle n°1

Du Lundi 09 Septembre au Vendredi 13 Septembre Planche n°3

Question de cours

Factoriser $X^5 - 1$ dans $\mathbb{R}[X]$.

Exercice 1

Calculer, pour
$$n \in \mathbb{N}^*$$
, $\sum_{0 \leqslant i < j \leqslant n} \binom{j}{i} 2^i$.

Exercice 2

Pour quelles valeurs de $m \in \mathbb{R}$ l'équation

$$\sqrt{3}\cos(x) - \sin(x) = m$$

admet-elle des solutions? Les déterminer lorsque $m=\sqrt{2}.$.

Exercice 3

- $\mathbf{1}. \ \mathrm{Montrer}: \, \forall \alpha \in \left]0, \frac{\pi}{4}\right[, \quad \tan(\alpha) = \frac{1}{\tan(\alpha)} \frac{2}{\tan\left(2\alpha\right)}.$
- **2**. Soit $n \in \mathbb{N}^*$. Déduire de la question précédente la valeur de $S_n = \sum_{k=1}^n \frac{1}{2^k} \tan\left(\frac{\pi}{2^{k+2}}\right)$.

Exercice 4

Pour tout entier $n \ge 1$, on note $S_n = \sum_{k=1}^n k^2$, et $T_n = \sum_{k=1}^n k^4$.

On introduit également $u_n = \frac{T_n}{S_n}$, et $v_n = 5 (u_{n+1} - u_n)$.

- 1. Donner les valeurs de S_n et T_n pour tous les entiers n inférieurs ou égaux à 5.
- 2. En déduire les valeurs de u_n et v_n pour tous les entiers n inférieurs ou égaux à 5.
- 3. Conjecturer quant à l'expression de v_n en fonction de n puis à propos de celle de u_n , et enfin celle de T_n .
- 4. Démontrer la formule conjecturée par récurrence.

Semaine de colle 1

Planche 1

Question de Cours.

Factoriser $X^5 - 1$ dans $\mathbb{R}[X]$

Exercice 1.

Résoudre dans $\mathbb R$ les équations suivantes

1.

$$\sin(x) + \sin(x - \frac{\pi}{3}) = \sqrt{3}$$

2.

$$\cos^2(x) - 2\sin^2(x) = \frac{1}{4}$$

Exercice 2.

À l'aide de la formule de Moivre, exprimer tan(3x) en fonction de tan(x).

Exercice 3.

Soit
$$n \in \mathbb{N}^*$$
 et $P = (X+1)^{2n} + (X-1)^{2n}$

- 1. Donner le degré et le coefficient dominant de P sans justifier.
- 2. Factoriser P en produit de facteurs irréductibles dans $\mathbb{C}[X]$.
- 3. En déduire que P se décompose dans $\mathbb{R}[X]$ sous la forme

$$P = 2 \prod_{k=0}^{n-1} \left(X^2 + \tan^2 \left(\frac{2k+1}{4n} \pi \right) \right)$$

4. En déduire une expression de

$$\prod_{k=0}^{n-1} \tan^2 \left(\frac{2k+1}{4n} \pi \right)$$

Semaine de colle 1

Planche 2

Question de Cours.

Énoncer et démontrer par récurrence la formule du binôme de Newton

Exercice 1.

Résoudre dans \mathbb{R} l'équation

$$1 + \cos(x) + \cos(2x) + \cos(3x) = 0$$

Exercice 2. Soient $n \in \mathbb{N}^*$ et $\omega = e^{2i\pi/n}$. Calculer

$$S = \sum_{k=0}^{n-1} (1 + \omega^k)^n$$

Exercice 3.

Déterminer deux réels a et b tels que 1 soit racine double de $P = X^5 + aX^2 + bX$ et factoriser le polynôme obtenu en produit de facteurs irréductibles dans $\mathbb{R}[X]$.

Semaine de colle 1 Planche 3

Question de Cours.

Calculer la somme
$$\sum_{k=0}^{n} \sin(k\theta)$$
, pour $\theta \in \mathbb{R}$ avec $\theta \not\equiv \frac{\pi}{2}[\pi]$

Exercice 1.

Résoudre sur $[0; \pi]$ l'inéquation

$$\sin(x) + \sin(2x) + \sin(3x) \ge 0$$

Exercice 2.

Factoriser le polynôme

$$P = X^8 + X^4 + 1$$

en produit de polynômes irréductibles dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$.

Exercice 3.

- 1. Exprimer $e^{in\pi/3}$ à l'aide de la formule du binôme de Newton.
- 2. En déduire une expression de

$$S = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} (-3)^k$$

Exercice 4. Déduire de la question de cours une expression de $S_1 = \sum_{k=0}^n k \cos(k\theta)$ et de $S_2 = \sum_{k=0}^n k \sin^3(k\theta)$

A] Question de cours :

Enoncer les formules d'addition, de duplication et de linéarisation. Donner et démontrer la formule d'addition de tan(a+b)

Exercices:

- 1) Exprimer le plus simplement possible la somme : $S = \sum_{k=0}^{n} \binom{n}{k} 5^k (1-2X)^{n-k} X^k$
- 2) Résoudre dans R puis dans [0; 4π [1'équation: $\cos^2(2x) + \frac{5}{2}\cos(2x) \frac{3}{2} = 0$
- 3) En écrivant $\binom{n}{k}\binom{n-k}{p-k}$ sous la forme du produit de deux autres coefficients binomiaux, prouver que : $\sum_{k=0}^{p} \binom{n}{k}\binom{n-k}{p-k} = 2^{p}\binom{n}{p}$
- 4) On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=3$ et $\forall n\in\mathbb{N}, u_{n+1}=3u_n-4$.

Donner pour tout $n \in N$ la valeur explicite de u_n .

B| Question de cours :

Donner et démontrer la formule du binôme de Newton

Exercices:

- 1) Résoudre dans R : cos(x) + cos(2x) = 0
- 2) Calculer $\sum_{k=0}^{n} (2.3^k 4)$

Soit
$$n \ge 2$$
. Calculer $\sum_{k=2}^{n} \ln \left(1 - \frac{1}{k^2}\right)$.

- 3) a) Factoriser sur \mathbb{C} le polynôme $P = (X + 1)^n e^{2ina}$, où a est un réel.
 - b) En déduire : $\prod_{k=0}^{n-1} \sin(a + \frac{k\pi}{n})$. Que vaut $\prod_{k=0}^{n-1} \sin(\frac{k\pi}{n})$?

C Question de cours :

Factoriser $X^5 - 1$ dans R[X].

Exercices:

- 1) Résoudre dans R l'équation : $\sin(x/2) + \sin(2x) = 0$
- 2) Calculer : $S = \sum_{k=0}^{n} \cos(k\theta)$
- 3) a) Soit $(n,p) \in \mathbb{N}$, avec $0 \le p \le n$. Montrer que : $\sum_{k=p}^{n} {k \choose p} = {n+1 \choose p+1}$
 - b) Que donne la formule précédente si on fixe : p = 1 ?
 - c) En fixant p = 2, en déduire la valeur de S = $\sum_{k=1}^{n} k^2$.
 - d) Après avoir simplifier $\binom{k+1}{3}$, trouver la valeur de $T = \sum_{k=1}^{n} k^3$.
- 4) Soit f la fonction définie par : $f(x) = \frac{2\ln(1+x)-x}{x}$ si x non nul et f(0) = 1.

 Quel est l'ensemble de définition de f? Est-elle continue sur cet ensemble? Justifier. Est-elle dérivable sur cet ensemble? Justifier

Pierre-Alain Sallard chez Frédéric Gaunard Classe de PT – 2024/2025 Pour BOULIF Lamia le mar. 10 sept. 24

Semaine 1

Trigonométrie, calcul algébrique; Racines de l'unité; Polynômes

Question de cours. Exprimer tan(x + y) à l'aide de tan(x) et tan(y).

Exercice 1 Résoudre dans $]-\pi$, π] l'équation $\sin x + \sin 2x + \sin 3x = 0$.

Exercice 2 Déterminer deux réels a et b pour que 1 soit racine double du polynôme $P = X^5 + aX^2 + bX$.

Une fois cette condition remplie, factoriser ce polynôme dans $\mathbb{R}[X]$.

Élements de correction

Exercice 1 On calcule d'abord $\sin x + \sin 3x = 2\sin 2x \cos x$. Ainsi $\sin x + \sin 2x + \sin 3x = 0 \iff \sin(2x) = 0$ ou $2\cos(x) + 1 = 0$. On obtient comme ensemble de solution $\left\{-\frac{2\pi}{3}, -\frac{\pi}{2}, 0, \frac{\pi}{2}, \frac{2\pi}{3}, \pi\right\}$.

Exercice 2 D'après le cours,

1 est racine double de P =
$$X^5 + aX^2 + bX$$
 \iff P (1) = P' (1) = 0 et P'' (1) \neq 0
$$\iff$$

$$\begin{cases} 1 + a + b = 0 \\ 5 + 2a + b = 0 \\ 20 + 2a \neq 0 \end{cases}$$

$$\iff$$
 $a = -4$ et $b = 3$

On obtient $X^5 - 4X^2 + 3X = X(X-1)^2(X^2 + 2X + 3)$ et c'est la factorisation cherchée car le discriminant de $X^2 + 2X + 3$ est strictement négatif.

Pierre-Alain Sallard chez Frédéric Gaunard Classe de PT – 2024/2025 Pour HAMITOUCHE LÉNA le mar. 10 sept. 24

Semaine 1

Trigonométrie, calcul algébrique; Racines de l'unité; Polynômes

Question de cours. Factoriser $X^5 - 1$ dans $\mathbb{R}[X]$.

Exercice 1 Résoudre dans \mathbb{R} l'équation $\sin(5x) = \sin(3x)$.

Exercice 2 Soit $P = (X + 1)^7 - X^7 - 1$.

Démontrer que $e^{i\frac{2\pi}{3}}$ est une racine de P et déterminer sa multiplicité.

Élements de correction

Exercice 1 Avec la formule $\sin(a) - \sin(b) = 2\cos(\frac{a+b}{2})\sin(\frac{a-b}{2})$, on obtient $\sin(5x) - \sin(3x) =$ $2\cos(4x)\sin(x) = 0 \iff x \equiv 0 [\pi] \text{ ou } x \equiv \frac{\pi}{8} \left[\frac{\pi}{4}\right].$

Exercice 2

- \bullet On sait que j vérifie $j^2+j+1=0$ donc $j+1=-j^2$. Ainsi $P(j)=-j^{14}-j^7-1$. Or $j^3=1\implies j^7=j$ et $j^{14} = j^2$ donc il vient $P(j) = -j^2 - j - 1 = 0$. CQFD. • Puisque $P'(X) = 7[(X+1)^6 - X^6]$ et que $(j+1)^6 - j^6 = j^{12} - j^6 = 1 - 1 = 0$, on a P'(j) = 0
- donc j est au moins de multiplicité 2.

Puisque P" = $42[(X + 1)^5 - X^5]$ et que $(j + 1)^5 - j^5 = -j^{10} - j^5 = -j - j^2 = 1$, on a P" $(-j) \neq 0$. Donc j est de multiplicité 2.

Pierre-Alain Sallard chez Frédéric Gaunard Classe de PT – 2024/2025 Pour TAHI Jensen le mar. 10 sept. 24

Semaine 1

Trigonométrie, calcul algébrique; Racines de l'unité; Polynômes

Question de cours. Écrire en Python une fonction récursive d'en-tête nb_termes_pos(L) qui prend en argument une liste L et renvoie le nombre de termes positifs ou nuls de cette liste.

Exercice 1 Résoudre sur $[0, 2\pi]$ l'inéquation $\cos(x) \ge \cos(3x)$.

Exercice 2 Après avoir justifié que, pour tous $n, k \in \mathbb{N}^*$, $\frac{1}{n} \binom{n}{k} = \frac{1}{k} \binom{n-1}{k-1}$, démontrer que, pour tout entier naturel n,

 $\sum_{k=0}^{n} (k+1) \binom{n}{k} = (n+2)2^{n-1}$

Élements de correction

Exercice 1 Avec la formule $\cos(a) - \cos(b) = -2\sin(\frac{a+b}{2})\sin(\frac{a-b}{2})$, on obtient $\cos(x) \ge \cos(3x) \iff \sin(x)\sin(2x) \ge 0$. On fait un tableau de signes sur $[0,2\pi]$ pour obtenir comme ensemble de solution $[0,\frac{\pi}{2}] \cup [\frac{3\pi}{2},2\pi]$.

Exercice 2

Par calcul direct, avec
$$\sum_{k=0}^{n} (k+1) \binom{n}{k} = \sum_{k=0}^{n} k \binom{n}{k} + \sum_{k=0}^{n} \binom{n}{k} = \sum_{k=1}^{n} n \binom{n-1}{k-1} + 2^n = n \sum_{j=0}^{n-1} \binom{n-1}{j} + 2^n = n 2^{n-1} + 2^n = (n+2)2^{n-1}$$
.

Ou bien en utilisant la formule du binôme,
$$f(x) := x(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^{k+1}$$
. En dérivant,

$$f'(x) = \sum_{k=0}^{n} (k+1) {n \choose k} x^k = (1+x)^n + nx(1-x)^{n-1} = (1+(n+1)x)(1-x)^{n-1}$$
. L'évaluation en $x = 1$ donne le résultat attendu.