Mathématiques PT. 2024 - 2025

Mathématiques & Informatique - F. Gaunard http://frederic.gaunard.com
Lycée Voltaire, Paris 11e.

Semaine de colle n°4

Du Lundi 30 Septembre au Vendredi 4 Octobre Planche n°1

Question de cours

Montrer que $(1, (X-1), (X-1)^2, ..., (X-1)^n)$ forme une base de $\mathbb{K}_n[X]$.

Exercice 1

Donner un $DL_4(0)$ de ln(cos(h)).

Exercice 2

On pose, pour tout entier naturel n et pour tout réel x,

$$h_n(x) = x^n e^{-x}$$
 et $L_n(x) = \frac{e^x}{n!} h_n^{(n)}(x)$.

- 1. Montrer que, pour tout entier n, L_n est une fonction polynômiale. Préciser son degré et son coefficient dominant.
- 2. Plus précisément, montrer que, pour tout $k \in \{0, \dots, n\}$, il existe $Q_k \in \mathbb{R}[X]$ tel que, pour tout $x \in \mathbb{R}$, on a $h_n^{(k)}(x) = x^{n-k}e^{-x}Q_k(x)$.

Exercice 3

- 1. Soient a,b positifs ou nuls. Vérifier $\arctan(a) \arctan(b) = \arctan\left(\frac{a-b}{1+ab}\right)$.
- 2. En déduire la limite lorsque n tend vers $+\infty$ de $\sum_{k=0}^{n} \arctan\left(\frac{1}{1+k(k+1)}\right)$.

Mathématiques PT. 2024 - 2025

Mathématiques & Informatique - F. Gaunard http://frederic.gaunard.com
Lycée Voltaire, Paris 11e.

Semaine de colle n°4

Du Lundi 30 Septembre au Vendredi 4 Octobre Planche n°2

Question de cours

Obtenir de deux façons (par Taylor-Young puis à l'aide de DL usuels), le développements limité à l'ordre 3 en 0 de $\ln(1 + \ln(1 + x))$.

Exercice 1

On pose $f(x) = \sqrt{x^2 - 1}$.

- 1. Montrer que f est de classe \mathcal{C}^{∞} sur $]1, +\infty[$, et que pour tout $n \in \mathbb{N}$, il existe un polynôme P_n tel que sur cet intervalle on ait $f^{(n)}(x) = \frac{P_n(x)}{(x^2-1)^{n-\frac{1}{2}}}$.
- **2**. Montrer que $\forall x \in]1, +\infty[, (x^2-1)f'(x) = xf(x)$. En déduire que :

$$\forall x \in \mathbb{R}, \ P_{n+1}(x) + (2n-1)xP_n(x) + n(n-2)(x^2-1)P_{n-1}(x) = 0.$$

Exercice 2

Soient E un espace vectoriel et $u_1, \ldots, u_n \in E$. Pour $k = 1, \ldots, n$, on pose $v_k = u_1 + \cdots + u_k$. Démontrer que la famille (u_1, \ldots, u_n) est libre si et seulement si la famille (v_1, \ldots, v_n) est libre.

Mathématiques PT. 2024 - 2025

Mathématiques & Informatique - F. Gaunard http://frederic.gaunard.com Lycée Voltaire, Paris 11e.

Semaine de colle n°4

Du Lundi 30 Septembre au Vendredi 4 Octobre Planche n°3

Question de cours

Montrer que pour tout $x \in \mathbb{R}^*$, on a $\arctan x + \arctan \frac{1}{x} = \pm \frac{\pi}{2}$.

Exercice 1

On introduit, pour $n \in \mathbb{N}$, les polynômes $Q_n = (X^2 - 1)^n$ et $L_n = Q_n^{(n)}$.

- 1. Quel est le degré de L_n ? Quel est son coefficient dominant ?
- Montrer que, pour tout n∈ N, (X²-1)Q'_n = 2nXQ_n.
 En déduire que, pour tout n∈ N, L_n est solution de l'équation différentielle

$$(1 - x^2)y'' - 2xy' + n(n+1)y = 0.$$

Exercice 2

Soit $(v_1, v_2, ..., v_n)$ une famille libre d'un espace vectoriel E de dimension finie $m \ge n$. Pour $k \in [1; n-1]$, on pose $w_k = v_k + v_{k+1}$ et $w_n = v_n + 1$. Montrer que la famille $(w_1, w_2, ..., w_n)$ est libre si et seulement si n est impair.

Exercice 3

Soit $P \in \mathbb{R}[X]$ un polynôme. Montrer que l'équation $P(x) = e^x$ admet au plus $\deg(P) + 1$ solutions.

Semaine de colle 4

Planche 1

Question de Cours.

Énoncer la formule de Leibniz et en déduire la dérivée n-ième de $f: x \mapsto (2x+1)^2 \sin(x)$.

Exercice 1.

- 1. Rappeler le domaine de définition et deux expressions de la dérivée de la fonction tangente puis donner le domaine de définition et l'intervalle image de sa fonction réciproque arctan.
- 2. Retrouver l'expression de la dérivée de arctan à partir de celle de tan.
- 3. En partant du $DL_n(0)$ de $\frac{1}{1+x}$, retrouver le $DL_{2n+1}(0)$ de $\arctan(x)$.
- 4. Tracer l'allure de sa courbe représentative avec ses asymptotes et sa tangente en 0.

Exercice 2.

Déterminer le $DL_3(0)$ de $f(x) = \frac{2x + x^2}{\ln(1+x)}$ en 0 et interpréter graphiquement le résultat.

Exercice 3.

À l'aide de la formule de Taylor-Young déterminer le $DL_2(1)$ de $\arctan(x)$ puis en déduire un développement asymptotique de $\arctan\left(1+\frac{1}{x}\right)$.

Semaine de colle 4

Planche 2

Question de Cours.

Obtenir le $DL_3(0)$ de $\ln(1 + \ln(1 + x))$ de deux façons (Par Taylor-Young puis à l'aide des DL usuels).

Exercice 1.

On considère la fonction f définie par

$$f(x) = \arctan\left(\sqrt{\frac{1+x}{1-x}}\right)$$

- 1. Donner son domaine de définition et de dérivabilité.
- 2. Calculer sa dérivée f'.
- 3. En déduire une expression simplifiée de f.
- 4. Tracer l'allure de la courbe représentative de f avec sa tangente en 0.

Exercice 2.

On considère la fonction f définie sur \mathbb{R} par f(1) = a et

$$f(x) = \frac{2x \ln(x)}{x - 1} \text{ si } x \neq 1$$

À l'aide d'un développement limité, répondre aux questions suivantes :

- 1. Quelle est la valeur de a pour laquelle f est continue en 1?
- 2. Justifier que le prolongement obtenu est de classe \mathcal{C}^1 sur \mathbb{R} .
- 3. Déterminer l'équation de la tangente à la courbe représentative de f en 1 et leur position relative au voisinage de 1.

Exercice 3.

Déterminer le $DL_5(0)$ de $\arctan\left(\frac{x}{1+x^2}\right)$

Semaine de colle 4

Planche 3

Question de Cours.

Montrer que, pour tout $x \in \mathbb{R}^*$, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \pm \frac{\pi}{2}$.

Exercice 1.

- 1. Rappeler le domaine de définition et de dérivabilité de la fonction arccos et donner une expression de sa dérivée.
- 2. Rappeler le $DL_n(0)$ de $(1+x)^{\alpha}$ pour $\alpha \in \mathbb{R}$.
- 3. En déduire le DL_5 de $\arccos(x)$ en 0.
- 4. Tracer l'allure de sa courbe représentative avec sa tangente en 0.

Exercice 2.

- 1. Déterminer un développement asymptotique de $f(x) = \frac{x^2 e^{\frac{1}{x}}}{x+2}$ à la précision $\frac{1}{x}$.
- 2. Interpréter graphiquement le résultat.

Exercice 3.

À l'aide de la formule de Taylor-Young déterminer le $DL_3(\frac{\pi}{3})$ de $f(x) = \ln(\cos(x))$

A] Question de cours :

Montrer que : $\forall x \in \mathbb{R}^*$, $arctan(x) + arctan(\frac{1}{x}) = \pm \frac{\pi}{2}$

Exercices:

1)

Soit la fonction f définie par $f(x) = \frac{\sin(x)}{1 + \sin(x)}$. On note Γ sa courbe représentative dans un repère orthonormé.

- a) Déterminer le domaine de définition de f. Comment peut-on réduire l'intervalle d'étude de f?
- b) Comparer $f(\pi x)$ et f(x). Que peut-on dire de Γ ? Réduire encore l'intervalle d'étude.
- c) Démontrer que la composée de deux fonctions croissantes est une fonction croissante. En écrivant f comme composée de fonctions, en déduire les variations de f sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right]$, puis déterminer la limite de f en $-\frac{\pi}{2}$.
- d) Tracer Γ à l'aide des résultats obtenus.
- 2) Montrer que $E = \{(x, y, z, t) \in \mathbb{R}^4, x + y = z + t = 0\}$ est un ev en donner une base.
- 4) Soit E un espace vectoriel de dimension 4 et soient F et G deux sous-espaces vectoriels de E de dimension 3, tels que $F \neq G$. Déterminer la dimension de $F \cap G$.

B] Question de cours :

Énoncé de la formule de Leibniz.

Application à la détermination de la dérivée n-ième de $f: x \mapsto (2x+1)^2 \sin(x)$.

Exercices:

- 1) Soit f la fonction définie par : $f(x) = \arccos(1-2x^2)$.
 - a) Déterminer son ensemble de définition et de dérivabilité.
 - b) Calculer f'(x) et simplifier. En déduire une expression simplifiée de f(x).
 - c) En posant α = arcsin x dans l'expression initiale de f, retrouver le résultat précédent.
- 2) Dans l'espace vectoriel des fonctions définies de R dans R, que peut-on dire des familles (f_1,f_2,f_3,f_4) et (f_1,f_2,f_4) avec : $f_1(x)=1$; $f_2(x)=\cos(x)$; $f_3(x)=\cos(2x)$ et $f_4(x)=\cos^2(x)$
- 3) Soit B= $(e_1,e_2,....,e_n)$ une base de E, un espace vectoriel de dimension n. Pour tout j de [1;n] on pose : $e'_j = (\sum_{i=1}^n e_i) e_j$. Montrer que la famille B'= $(e'_1,e'_2,....,e'_n)$ est une base de E.

\mathbf{C} **Question de cours:**

Obtenir de deux façons le développement limité à l'ordre 3 en 0 de ln(1 + ln(1 + x)).

Exercices:

- 1) Montrer la relation suivante sur un intervalle à préciser : $2\arctan\sqrt{\frac{1-x}{1+x}} + \arcsin x = \frac{\pi}{2}$
- 2) Montrer que $E = \{ f \in C^2(R,R) / f'' + 3f' + f = 0 \}$ est un ev et en donner une base.
- 3) Soit pour tout k∈ [0; n]: P_k = X^k(1 X)^{n-k}.
 a) Montrer que la famille (P_k)_{k∈[0;n]} est une base de R_n[X].
 b) Donner la décomposition de Q = dⁿ/dXⁿ (Xⁿ(1 X)ⁿ) dans cette base.
 - c) En déduire la valeur de $\sum_{k=0}^{n} {n \choose k}^2$.

Interrogation orale Lycée Voltaire

Pierre-Alain Sallard chez Frédéric Gaunard Classe de PT – 2024/2025 Pour HUET Maxence le mar. 1 oct. 24

Semaine 4

Analyse réelle – Espaces vectoriels

Question de cours. Donner de deux façons différentes le développement limité à l'ordre 3 en 0 de la fonction $x \mapsto \ln (1 + \ln(1 + x))$.

Exercice 1.

On définit la fonction f par $f(x) = \arctan\left(\sqrt{\frac{1-x}{1+x}}\right)$.

- **1.** Déterminer l'ensemble de définition de *f*.
- **2.** Étudier la continuité et la dérivabilité de la fonction *f*.
- 3. Dresser le tableau de variation de f, en précisant ses limites. Tracer l'allure du graphe de f.

Interrogation orale Lycée Voltaire

Élements de correction HUET MAXENCE

Exercice 1.

- Le dénominateur doit être non nul et l'expression sous la racine carrée doit être positive : un tableau de signes permet d'établir que $\mathcal{D}_f =]-1,1]$.
- La fonction f est continue sur \mathcal{D}_f par opérations élémentaires. La fonction racine n'est pas dérivable en 0: donc f n'est pas dérivable en x = 1.

Pour $x \in]-1,1[$, $f'(x) = -\frac{1}{\sqrt{1-x^2}}$ (après quelques calculs!). D'où la décroissance de la fonction f sur \mathcal{D}_f .

• On a donc une fonction f décroissante, avec f(1) = 0 et $\lim_{x \to -1^+} = +\frac{\pi}{2}$.

Interrogation orale Lycée Voltaire

Pierre-Alain Sallard chez Frédéric Gaunard Classe de PT – 2024/2025 Pour LOUZANI AMEL le mar. 1 oct. 24

Semaine 4

Analyse réelle – Espaces vectoriels

Question de cours. Énoncer la formule de Leibniz et l'appliquer pour déterminer une expression de la derivée n-ième de $f: x \mapsto (2x+1)^2 \sin(x)$.

Exercice 1. La fonction de Gudermann, notée gd, est définie sur \mathbb{R} par

$$gd(x) = arcsin(tanh x)$$

On rappelle que la fonction tangente hyperbolique est définie pour tout réel x par $\tanh x = \frac{\sinh x}{\cosh x}$.

- 1. Dresser le tableau de variations de gd, en précisant ses limites.
- 2. Donner le développement limité à l'ordre 3 en 0 de gd.
- **3.** Justifier que gd coïncide sur \mathbb{R} avec la fonction $f: x \mapsto \arctan(e^x) \frac{\pi}{2}$.

Élements de correction LOUZANI AMEL

Exercice 1.

- Après simplification, on obtient $gd'(x) = \frac{1}{\operatorname{ch} x}$ donc gd est croissante sur \mathbb{R} , avec $\lim_{x \to -\infty} gd(x) = \arcsin(-1) = -\frac{\pi}{2}$ et $\lim_{x \to +\infty} gd(x) = \arcsin(1) = \frac{\pi}{2}$. Avec $gd^{(2)}(x) = \frac{-\operatorname{sh} x}{\operatorname{ch}^2 x}$ et $gd^{(3)}(x) = \frac{2\operatorname{sh}^2 x \operatorname{ch} x}{\operatorname{ch}^3 x}$, on obtient par Taylor-Young:

$$gd(x) = x - \frac{x^3}{6} + o(x^3)$$

• On montre que $f'(x) = \frac{1}{\operatorname{ch} x} = \operatorname{gd}'(x)$ et que les valeurs en 0 sont égales, ce qui fournit le résultat.

Pierre-Alain Sallard chez Frédéric Gaunard Classe de PT – 2024/2025 Pour KUNZT ELIOTT le mar. 1 oct. 24

Semaine 4

Analyse réelle – Espaces vectoriels

Question de cours. Démontrer que, pour tout $x \in \mathbb{R}^*$, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \pm \frac{\pi}{2}$.

Exercice 1. On note $U = \{-\frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}\}$ et on définit f sur \mathbb{R} par

$$\begin{cases} f(x) = \arctan\left(\sqrt{\frac{1-\sin x}{1+\sin x}}\right) & \text{pour } x \in \mathbb{R} \setminus \mathbf{U} \\ f(x) = \frac{\pi}{2} & \text{pour } x \in \mathbf{U} \end{cases}$$

- **1.** En étudiant la périodicité de f puis en calculant $f(\pi x)$, justifier que l'on peut restreindre l'étude de f à l'intervalle $I = [-\pi/2, \pi/2]$.
- **2.** Justifier que f est continue en $-\frac{\pi}{2}$.
- 3. Donner une expression de f' sur $]-\pi/2$, $\pi/2[$ et en déduire une expression simple de f sur I.

Tracer alors l'allure du graphe de f.

Élements de correction KUNZT ELIOTT

Exercice 1.

- Puisque f est 2π -périodique et que $f(\pi x) = f(x)$ (symétrie par rapport à la droite $x = \frac{\pi}{2}$), on restreint l'étude à $I = [-\pi/2, \pi/2]$.
- Par composition de limite, on a bien $\lim_{x \to -\frac{\pi}{2}} f(x) = \lim_{y \to +\infty} \arctan(y) = \frac{\pi}{2} = f(-\frac{\pi}{2})$ donc f est
- bien continue en ce point. • On pose $g(x) = \frac{1-\sin x}{1+\sin x}$: g n'est pas définie en $-\pi/2$, g est positive sur I et g>0 si $x\neq \pi/2$ donc \sqrt{g} n'est pas dérivable en $\pi/2$.

Pour $x \in]-\pi/2, \pi/2[$, $g'(x) = -\frac{2\cos x}{(1+\sin x)^2}$ et, après calculs, f'(x) = -1/2. Donc sur I, $f(x) = -\frac{x}{2} + \arctan 1 = -\frac{x}{2} + \frac{\pi}{4}$.

Et on prolonge f par symétrie et périodicité pour obtenir «un signal triangulaire».