ESSEC II 2017, option économique : correction

I Indice de Gini

- 1. (a) La définition d'une fonction convexe sur J signifie que sur tout segment $[t_1, t_2]$ de J, l'image de tout point du segment $[t_1, t_2]$ est **en dessous de la corde** passant par les points $(t_1, f(t_1))$ et $(t_2, f(t_2))$.
 - (b) Lorsque f est une fonction de classe C^1 sur [0,1], f est convexe sur [0,1] si et seulement si sa dérivée est croissante sur [0,1].
- 2. (a) D'après l'énoncé, \tilde{f} est concave si $-\tilde{f}: t \mapsto f(t) t$ est convexe. Montrons que $-\tilde{f}$ est convexe : $\forall (t_1,t_2) \in [0,1]^2, \ \forall \lambda \in [0,1],$

$$-\tilde{f}(\lambda t_1 + (1 - \lambda)t_2) = f(\lambda t_1 + (1 - \lambda)t_2) - (\lambda t_1 + (1 - \lambda)t_2)$$

$$\leq \lambda f(t_1) + (1 - \lambda)f(t_2) - \lambda t_1 - (1 - \lambda)t_2$$

$$= \lambda (f(t_1) - t_1) + (1 - \lambda)(f(t_2) - t_2)$$

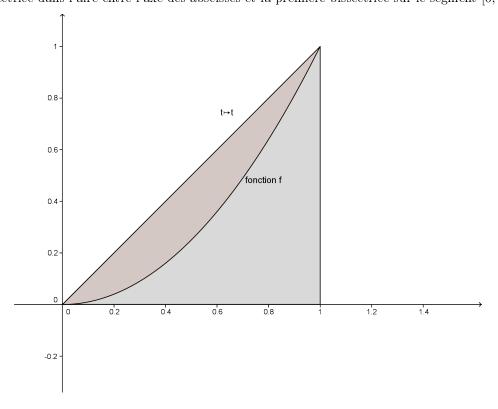
$$= \lambda \cdot \left(-\tilde{f}(t_1)\right) + (1 - \lambda) \cdot \left(-\tilde{f}(t_2)\right)$$

Ainsi, $-\tilde{f}$ est bien convexe i.e. \tilde{f} est concave.

(b) Toutes les fonctions intervenant dans le calcul sont continues sur le segment [0,1] donc y admettent une intégrale; et par linéarité de l'intégration sur [0,1]:

$$I(f) = 2\left(\int_0^1 t dt - \int_0^1 f(t) dt\right) = 2\left(\left[\frac{t^2}{2}\right]_0^1 - \int_0^1 f(t) dt\right) = 1 - 2\int_0^1 f(t) dt$$

(c) On remarque dans le calcul précédent que $\int_0^1 t dt = \frac{1}{2} \iff 2 = \frac{1}{\int_0^1 t dt}$. Ainsi, $I(f) = 2 \int_0^1 (t - f(t)) dt = \frac{\int_0^1 (t - f(t)) dt}{\int_0^1 t dt}$ est la proportion de l'aire entre la courbe de f et la première bissectrice dans l'aire entre l'axe des abscisses et la première bissectrice sur le segment [0, 1].



3. Un premier exemple.

Soit $f:[0,1]\to\mathbb{R}$ telle que $f(t)=t^2$ pour tout $t\in[0,1]$.

- (a) $\bullet \forall t \in [0,1], t^2 \in [0,1]$ donc f est bien définie sur [0,1], à valeurs dans [0,1] et en particulier $f(0) = 0^2 = 0$ et $f(1) = 1^2 = 1$.
 - f est de classe C^2 sur [0,1] comme fonction polynômiale. En particulier, elle est bien continue et de classe C^1 et $f''(t) = 2 \ge 0$ donc f' est croissante. f est bien convexe.

f est bien un élément de ${\cal E}$

(b)
$$I(f) = 1 - 2 \int_0^1 t^2 dt = 1 - 2 \left[\frac{t^3}{3} \right]_0^1 = 1 - \frac{2}{3} = \frac{1}{3}$$
.

4. Propriétés de l'indice de Gini.

(a) Montrons que $\tilde{f} \geq 0$ sur [0,1]: Comme l'énoncé donne les valeurs de f(0) et f(1), $\forall t \in [0,1]$, appliquons l'inégalité de convexité avec $t_1 = 1, t_2 = 0$ et $\lambda = t$:

$$f(t.1 + (1-t).0) \le t.f(1) + (1-t).f(0) \iff f(t) \le t \iff t - f(t) \ge 0$$

Ainsi, $\forall t \in [0,1] \ \tilde{f}(t) \ge 0$ et par croissance des bornes, $\int_0^1 \tilde{f}(t)dt \ge 0$ donc $I(f) \ge 0$.

- (b) $I(f) = 0 \iff \int_0^1 \tilde{f}(t)dt = 0 \iff \forall t \in [0,1], \ \tilde{f}(t) = 0 \text{ car } \tilde{f} \text{ est continue et positive sur } [0,1].$ Ainsi, $I(f) = 0 \iff \forall t \in [0,1], f(t) = t.$
- (c) Pour tout f élément de E, f est continue et positive et $f \neq 0$ (car f(1) = 1) donc $\int_0^1 f(t)dt > 0$. Ainsi, $I(f) = 1 - 2 \int_0^1 f(t)dt < 1$.
- (d) Pour tout entier n > 0, on définit f_n sur [0,1] par $f_n(t) = t^n$.

i.
$$I(f_n) = 1 - 2 \int_0^1 t^n dt = 1 - 2 \left[\frac{t^{n+1}}{n+1} \right]_0^1 = 1 - \frac{2}{n+1}$$
.

- ii. Méthode 1: La question précédente donne $\lim_{n \to +\infty} I(f_n) = 1$. Donc, par définition de la limite, en posant $\varepsilon = 1 A > 0$, il existe $N \in \mathbb{N}$, tel que pour tout entier $n \geq N$, $1 \varepsilon < I(f_n) < 1 + \varepsilon$. Ainsi, en particulier, pour tout $n \geq N$, $I(f_n) > 1 \varepsilon = A$. Donc $f = f_N$ convient.
 - Méthode 2 : Cherchons les entiers $n \in \mathbb{N}^*$ tels que $I(f_n) > A$: $I(f_n) > A \iff 1 \frac{2}{n+1} > A \iff \frac{2}{n+1} < 1 A \iff \frac{n+1}{2} > \frac{1}{1-A}, \text{ car}$ $1 A > 0 , \iff n > \frac{2}{1-A} 1 \iff n \ge \left\lfloor \frac{2}{1-A} \right\rfloor.$ En posant $N = \left\lfloor \frac{2}{1-A} \right\rfloor$, alors $f = f_N$ convient.

5. Minoration de l'indice de Gini

- (a) $f \in E$ donc f est continue sur [0,1] et $t \mapsto t$ est continue sur [0,1] donc \tilde{f} est continue sur le segment [0,1]. Or toute fonction continue sur un segment est bornée et atteint ses bornes donc il existe t_0 dans [0,1] tel que $\tilde{f}(t_0) = \max_{t \in [0,1]} \tilde{f}(t)$.
- (b) On remarque que $t=\frac{t}{t_0}.t_0=\frac{t}{t_0}.t_0+(1-\frac{t}{t_0}).0$. Ainsi, en appliquant l'inégalité de concavité à \tilde{f} avec $t_1=t_0,\,t_2=0$ et $\lambda=\frac{t}{t_0}\in[0,1]$ car $t\in[0,t_0]$, on a :

$$\tilde{f}(t) = \tilde{f}\left(\frac{t}{t_0}.t_0 + (1 - \frac{t}{t_0}).0\right) \ge \frac{t}{t_0}.\tilde{f}(t_0) + (1 - \frac{t}{t_0}).\underbrace{\tilde{f}(0)}_{=0 - f(0) = 0} = \frac{t}{t_0}.\tilde{f}(t_0)$$

(c) On remarque que $t = \frac{t-1}{t_0-1}.(t_0-1)+1 = \frac{t-1}{t_0-1}.t_0 - \frac{t-1}{t_0-1}+1 = \frac{t-1}{t_0-1}.t_0+1 - \frac{t-1}{t_0-1}$. Ainsi, en appliquant l'inégalité de concavité à \tilde{f} avec $t_1 = t_0, \, t_2 = 1$ et $\lambda = \frac{t-1}{t_0-1} \in [0,1]$ car

 $t \in [t_0, 1] \text{ donc } t_0 - 1 \le t - 1 \le 0 \text{ donc en multipliant par } \frac{1}{t_0 - 1} < 0, \text{ on a : } 1 \ge \frac{t - 1}{t_0 - 1} \ge 0; \text{ on a : } 1 \ge 0$ $\tilde{f}(t) = \tilde{f}\left(\frac{t-1}{t_0-1}.t_0 + (1 - \frac{t-1}{t_0-1}).1\right) \ge \frac{t-1}{t_0-1}.\tilde{f}(t_0) + (1 - \frac{t-1}{t_0-1}).\underbrace{\tilde{f}(1)}_{-1-f(1)=0} = \frac{t-1}{t_0-1}.\tilde{f}(t_0)$

(d) Ainsi,

$$\begin{split} I(f) &= 2 \int_0^1 \tilde{f}(t) dt & = \\ & \text{Charles} & 2 \int_0^{t_0} \tilde{f}(t) dt + 2 \int_{t_0}^1 \tilde{f}(t) dt \\ & \geq \\ & \text{d'après les questions précédentes} & 2 \int_0^{t_0} \frac{t}{t_0} . \tilde{f}(t_0) dt + 2 \int_{t_0}^1 \frac{t-1}{t_0-1} . \tilde{f}(t_0) dt \\ & = & 2. \tilde{f}(t_0) \int_0^{t_0} \frac{t}{t_0} dt + 2. \tilde{f}(t_0) \int_{t_0}^1 \frac{t-1}{t_0-1} dt \\ & = & 2. \tilde{f}(t_0) \left[\frac{t^2}{2t_0} \right]_0^{t_0} + 2. \tilde{f}(t_0) \left[\frac{(t-1)^2}{2(t_0-1)} \right] \int_{t_0}^1 dt dt \\ & = & 2. \tilde{f}(t_0) \left[\frac{t_0}{2} - 2. \tilde{f}(t_0) \frac{t_0-1}{2} \right] \\ & = & \tilde{f}(t_0) \end{split}$$

Le cas à densité TT

Soit g une densité de probabilité sur \mathbb{R} , nulle sur $]-\infty,0]$, continue et strictement positive sur $]0,+\infty[$. On définit une fonction G sur \mathbb{R}_+ par $G(x)=\int_0^x g(v)dv$ pour $x\in\mathbb{R}_+$. Si g représente la densité de population classée suivant son revenu croissant, G(x) représente la proportion de la population dont le revenu est inférieur à x. On suppose de plus que $\int_{0}^{+\infty} vg(v)dv$ est convergente et on note m sa valeur qui représente donc la richesse moyenne de la population.

- 6. (a) D'après l'énoncé, la fonction $v \mapsto vg(v)$ est continue et strictement positive sur $]0, +\infty[$ comme produit de fonctions continues et strictement positives donc $m = \int_{0}^{+\infty} vg(v)dv > 0$.
 - (b) $G(x) = \int_{-x}^{x} g(v)dv$ car g est nulle sur \mathbb{R}_{-} . On reconnaît ainsi la fonction de répartition d'une variable aléatoire admettant q pour densité. Ainsi, d'après le cours :
 - G est continue sur $[0, +\infty[$.
 - G est de classe C^1 sur $]0, +\infty[$ (car g est continue sur cet intervalle). Elle est en particulier dérivable et G'(x) = g(x) > 0 sur $]0, +\infty[$ donc G est strictement croissante sur $]0, +\infty[$.
 - $G(0) = \int_0^0 g(v)dv = 0$ et $\lim_{x \to +\infty} G(x) = 1$ car G est une fonction de répartition.

Ainsi, G réalise une bijection de $[0, +\infty[$ dans $[G(0), \lim_{x \to \infty} G(x)] = [0, 1[$.

- (c) G^{-1} est de même variation que G donc strictement croissante sur [0,1[.
- 7. (a) G est continue sur $[0, +\infty[$ et de classe C^1 sur $]0, +\infty[$. On peut donc poser le changement de variable $u = G(v) \iff v = G^{-1}(u)$:
 - bornes: $\begin{array}{c} u:0\to t \\ \iff v:G^{-1}(0)=0\to G^{-1}(t) \end{array}$
 - élément différentiel : du = G'(v)dv = g(v)dv.

Donc:

$$\int_{0}^{t} G^{-1}(u)du = \int_{0}^{G^{-1}(t)} vg(v)dv.$$

(b)
$$G^{-1}$$
 étant la réciproque de G , on a $\lim_{t\to 1}G^{-1}(t)=+\infty$.
Ainsi, $\lim_{t\to 1}\int_0^tG^{-1}(u)du=\lim_{t\to 1}\int_0^{G^{-1}(t)}vg(v)dv=\int_0^{+\infty}vg(v)dv=m$.
Donc $\int_0^1G^{-1}(u)du$ converge et vaut m .

- 8. Soit f la fonction définie sur [0,1] par : $f(t) = \frac{1}{m} \int_0^t G^{-1}(u) du$ pour tout $t \in [0,1[$ et f(1)=1.
 - $t\mapsto \int_0^t G^{-1}(u)du$ est l'unique primitive de G^{-1} sur [0,1[qui s'annule en 0 . Ainsi, f
 - $\lim_{t \to 1} f(t) = \frac{1}{m} \int_0^1 G^{-1}(u) du = \frac{1}{\text{d'après 7.(b)}} \frac{1}{m} m = 1 f(1).$

ii. G^{-1} est continue sur [0,1[comme bijection réciproque de G, continue sur $[0,+\infty[$ donc $t \mapsto \int_0^t G^{-1}(u)du$ est de classe C^1 sur [0,1[.

f est donc de classe C^1 sur [0,1[et $f'(t)=\frac{1}{m}G^{-1}(t)$ est strictement croissante sur [0,1[car G^{-1} est strictement croissante sur [0,1[et m>0.

Ainsi, f est bien convexe sur [0,1[.

- \bullet D'après les questions précédentes, f est bien définie sur [0,1], elle est continue sur [0,1]et convexe sur [0,1] donc convexe sur [0,1].
 - $f'(t) = \frac{1}{m}G^{-1}(t) \ge 0 \text{ sur } [0,1[(\text{car } m > 0 \text{ et } G^{-1} \text{ est à valeurs dans } [0,+\infty[) \text{ donc } f$ Ainsi, f([0,1]) = [f(0), f(1)] = [0,1]: f est bien à valeurs dans [0,1] et f(0) = 0,
- (b) $I(f) = 1 2 \int_{0}^{1} f(t)dt$.

Effectuons une I.P.P. sur l'intégrale partielle $\int_0^x f(t)dt = \int_0^x 1.f(t)dt$ avec $x \in [0,1[$:

On pose v(t) = f(t) et u(t) = t fonctions de classe C^1 sur [0, 1] et $v'(t) = \frac{1}{m}G^{-1}(t)$ et u'(t) = 1

donc:

$$\int_{0}^{x} 1.f(t)dt = xf(x) - \frac{1}{m} \int_{0}^{x} tG^{-1}(t)dt.$$

donc:
$$\int_0^x 1.f(t)dt = xf(x) - \frac{1}{m} \int_0^x tG^{-1}(t)dt .$$
 On pose alors le changement de variable $v = G^{-1}(t) \iff t = G(v)$ dans la dernière intégrale :
$$\int_0^x 1.f(t)dt = xf(x) - \frac{1}{m} \int_0^{G^{-1}(x)} G(v)vg(v)dv.$$
 On passe à la limite lorsque x tend vers 1 :

$$\int_0^1 f(t)dt = \lim_{x \to 1} \left(x f(x) - \frac{1}{m} \int_0^{G^{-1}(x)} G(v) v g(v) dv \right) = 1 - \frac{1}{m} \int_0^{+\infty} G(v) v g(v) dv.$$

Ainsi,

$$I(f) = 1 - 2\left(1 - \frac{1}{m} \int_0^{+\infty} G(v)vg(v)dv\right) = -1 + \frac{2}{m} \int_0^{\infty} vg(v)G(v)dv.$$

- 9. Soit λ un réel strictement positif. On suppose dans cette question que g est une densité de la loi exponentielle de paramètre λ .
 - (a) Pour x > 0, $G(x) = 1 e^{-\lambda x}$
 - (b) Pour déterminer l'expression de la bijection réciproque de G, pour tout $u \in [0,1[$, on résout l'équation G(x) = u d'inconnue $x \in [0, +\infty[$:

$$G(x) = u \iff 1 - e^{-\lambda x} = u \iff e^{-\lambda x} = 1 - u \iff_{\text{car } u < 1} \iff_{1 - u > 0} -\lambda x = \ln(1 - u) \iff x = -\frac{1}{\lambda} \ln(1 - u)$$

- (c) m est l'espérance d'une variable aléatoire suivant la loi exponentielle de paramètre λ donc, d'après le cours, $m = \frac{1}{\lambda}$
- (d) g vérifie bien les hypothèse de la partie II. Nous pouvons donc appliquer la définition de la question 8.:

pour tout
$$t \in [0, 1[, f(t) = \frac{1}{m} \int_0^t G^{-1}(u) du = \frac{1}{\frac{1}{\lambda}} \int_0^t -\frac{1}{\lambda} \ln(1-u) du = -\lambda \frac{1}{\lambda} \int_0^t -\ln(1-u) du$$

(e) • Méthode 1:
$$f(t) = \int_0^t -\ln(1-u)du$$
.
Effect uons une I.P.P. judicieuse en choisissant $w(u) = 1-u$ comme primitive de $w(u) = -1$:
on pose $v(u) = \ln(1-u)$ et $w(u) = 1-u$. v et w sont de classe C^1 sur $[0,1]$ et $v'(u) = -\frac{1}{1-u}$ et $w'(u) = -1$:
 $f(t) = \int_0^t -\ln(1-u)du = \int_0^t w'(u)v(u)du = [(1-u)\ln(1-u)]_0^t - \int_0^t -\frac{1}{1-u}.(1-u)du = [(1-u)\ln(1-u)]_0^t - [(1-u)\ln(1-u)]_0^t$

 $(1-t)\ln(1-t) + \int_{0}^{t} 1du = (1-t)\ln(1-t) + t.$

- *Méthode 2*: on peut vérifier que f est l'unique primitive de $t \mapsto -\ln(1-t)$ qui s'annule en 0 en calculant : f(0) = 0 et $f'(t) = -\ln(1-t)$.
- (f) $t \mapsto (1-t)\ln(1-t)$ est continue sur [0,1[(car $1-t \in]0,1]$) sur cet intervalle donc l'intégrale est impropre en 1. Calculons l'intégrale partielle :

On effectue une intégration par parties en posant $u(t) = -\frac{(1-t)^2}{2}$ et $v(t) = \ln(1-t)$, fcts de classe C^1 sur [0,1[de dérivées u'(t) = (1-t) et $v'(t) = -\frac{1}{1-t}$.

$$\forall x \in [0,1[, \int_0^x (1-t)\ln(1-t)dt = \int_0^x u'(t)v(t)dt = \left[-\frac{(1-t)^2}{2}\ln(1-t) \right]_0^x - \int_0^x -\frac{(1-t)^2}{2}. -\frac{1}{1-t}dt$$

$$= -\frac{(1-x)^2\ln(1-x)}{2} - \int_0^x \frac{1-t}{2}dt$$

$$= -\frac{(1-x)^2\ln(1-x)}{2} - \left[-\frac{(1-t)^2}{4} \right]_0^x$$

$$= -\frac{(1-x)^2\ln(1-x)}{2} + \frac{(1-x)^2}{4} - \frac{1}{4}$$

$$\xrightarrow{x \to 1} -\frac{1}{4}$$

car en posant $X=1-x \xrightarrow[x \to 1]{} 0$, on a $(1-x)^2 \ln(1-x)=X^2 \ln(X) \longrightarrow 0$ par croissance comparée. donc :

$$\int_0^1 (1-t)\ln(1-t)dt = -\frac{1}{4}$$

$$\begin{array}{ll} \text{(g)} \ \ I(f) = 2 \int_0^1 (t-f(t)) dt & \underset{\text{d'après 9.(e)}}{=} \ 2 \int_0^1 - (1-t) \ln(1-t) dt = -2 \int_0^1 (1-t) \ln(1-t) dt & \underset{\text{d'après 9.(f)}}{=} \ -2. -\frac{1}{4} = \frac{1}{2}. \end{array}$$

III Application à une population

- 10. (a) Pour tout $i \in [1, n]$, $p_i = \frac{n_i}{N} \ge 0$ car d'après l'énoncé, on a $n_i \ge x_i \in \mathbb{N}^*$ donc $n_i > 0$, et donc $N = \sum_{i=1}^n n_i > 0$.
 - $\sum_{i=1}^{n} p_i = \sum_{i=1}^{n} \frac{n_i}{N} = \frac{1}{N} \sum_{i=1}^{n} n_i = \frac{1}{N} N = 1.$

Ainis, la famille $P = (p_i)_{1 \le i \le n}$ définit bien une loi de probabilité.

On prouve par un raisonnement similaire que la famille $Q=(q_i)_{1\leq i\leq n}$ et $R=(r_i)_{1\leq i\leq n}$ définissent des lois de probabilité.

- (b) Pour tout $i \in [1, n-1]$, d'après l'énoncé, on sait que $\varepsilon_i \leq \varepsilon_{i+1} \iff \frac{x_i}{n_i} \leq \frac{x_{i+1}}{n_{i+1}} \iff \frac{q_i}{p_i} = \frac{N}{X} \frac{x_i}{n_i} \leq \frac{N}{X} \frac{x_{i+1}}{n_{i+1}} = \frac{q_{i+1}}{p_{i+1}}$
- (c) On remarque que pour tout $i \in [1, n]$, $\frac{r_i}{p_i} = \frac{N}{Y} \frac{y_i}{n_i} = \frac{N}{Y} \frac{n_i x_i}{n_i} = \frac{N}{Y} (1 \varepsilon_i)$. Or, pour tout $i \in [1, n-1]$, d'après l'énoncé, $\varepsilon_i \le \varepsilon_{i+1} \iff 1 - \varepsilon_i \ge 1 - \varepsilon_{i+1} \iff \frac{N}{V} (1 - \varepsilon_i) \ge 1 - \varepsilon_i$

$$\frac{N}{Y}(1 - \varepsilon_{i+1}) \iff \frac{r_i}{p_i} \ge \frac{r_{i+1}}{p_{i+1}}.$$

(d) Pour
$$i$$
 appartenant à $\llbracket 1,n \rrbracket$, $\frac{p_i-\varepsilon q_i}{1-\varepsilon}=\frac{\frac{n_i}{N}-\frac{X}{N}\cdot\frac{x_i}{X}}{1-\frac{X}{N}}=\sum_{\substack{\text{r\'eductions au m\'eme d\'enominateur}}}{\frac{n_i-x_i}{N}}=\frac{1-\frac{x_i}{N}}{\frac{N-X}{N}}=\frac{n_i-x_i}{\frac{N-X}{N}}=\frac{n_i-x_i}{N-X}=\frac{y_i}{N-X}=\frac{y_i}{N}=r_i$

11. Dans un premier temps, nous allons construire une application appartenant à E, qui permet de mesurer les inégalités à l'intérieur de la classe I.

On pose $P_0=Q_0=0$, et pour $i\in \llbracket 1,n \rrbracket$, $P_i=\sum_{h=1}^i p_h$ et $Q_i=\sum_{h=1}^i q_h$. On définit alors l'application φ de [0,1] dans [0,1] telle que, pour tout entier $i\in \llbracket 0,n \rrbracket$, $\varphi(P_i)=Q_i$ et pour tout entier $i\in \llbracket 0,n-1 \rrbracket$, φ est affine sur le segment $[P_i,P_{i+1}]$.

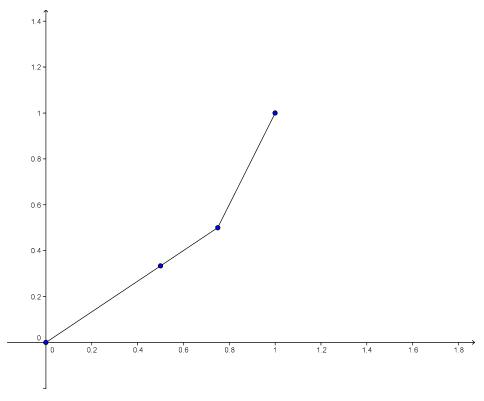
(a) D'après l'énoncé, on a :

•
$$p_1 = \frac{1}{2}$$
 et $q_1 = \frac{1}{3}$ donc $(P_1, Q_1) = (p_1, q_1) = \left(\frac{1}{2}, \frac{1}{3}\right)$.

•
$$p_2 = \frac{1}{4}$$
 et $q_2 = \frac{1}{6}$ donc $(P_2, Q_2) = (p_1 + p_2, q_1 + q_2) = \left(\frac{3}{4}, \frac{1}{2}\right)$.

•
$$p_3 = \frac{1}{4}$$
 et $q_3 = \frac{1}{2}$ donc $(P_3, Q_3) = (p_1 + p_2 + p_3, q_1 + q_2 + q_3) = (1, 1)$.

On place les points de coordonnées $(P_i, Q_i)_{0 \le i \le 3}$ et on les relie par des segment, on obtient :



- (b) La pente de la droite passant par les points de coordonnées (P_{i-1},Q_{i-1}) et (P_i,Q_i) est $u_i=\frac{Q_i-Q_{i-1}}{P_i-P_{i-1}}=\frac{\sum_{h=1}^i q_h-\sum_{h=1}^{i-1} q_h}{\sum_{h=1}^i p_h-\sum_{h=1}^{i-1} p_h}=\frac{q_i}{p_i}$ pour i appartenant à $[\![1,n]\!]$.
- (c) D'après la question précédente, φ est de pente u_{i+1} donc in existe $b \in \mathbb{R}$ tel que $\varphi(t) = u_{i+1}t + b$. Trouvons la valeur de b:

On sait que
$$\varphi(P_i) = Q_i \iff u_{i+1}P_i + b = Q_i \iff b = Q_i - u_{i+1}P_i$$
.
Ainsi, $\varphi(t) = u_{i+1}(t - P_i) + Q_i$

- (d) On admet que, la suite $(u_i)_{1 \leq i \leq n}$ des pentes de φ étant croissante (d'après 10.(b)), φ est une fonctions convexe.
 - Pour tout $i \in [0, 1n-1]$, φ est continue sur le segment $[P_i, P_{i+1}]$ en tant que fonction affine donc φ est continue sur [0, 1].

- $\varphi(0) = \varphi(P_0) = Q_0 = 0$ et $\varphi(1) = \varphi(P_n) = Q_n = 1$. de plus, φ est continue et croissante sur [0,1] (car pour tout $i \in [0,1n-1]$, $\varphi'(t) = u_{i+1} \le 0$ sur $]P_i, P_{i+1}[$). φ appartient bien à E.
- (e) Pour $i \in [0, n-1]$,

$$\int_{P_{i}}^{P_{i+1}} \varphi(t)dt = \int_{P_{i}}^{P_{i+1}} u_{i+1}(t - P_{i}) + Q_{i}dt = \left[u_{i+1} \frac{(t - P_{i})^{2}}{2} + Q_{i}t \right]_{P_{i}}^{P_{i+1}}$$

$$= u_{i+1} \frac{(P_{i+1} - P_{i})^{2}}{2} + Q_{i}(P_{i+1} - P_{i})$$

$$= \frac{Q_{i+1} - Q_{i}}{P_{i+1} - P_{i}} \frac{(P_{i+1} - P_{i})^{2}}{2} + Q_{i}(P_{i+1} - P_{i})$$

$$= (P_{i+1} - P_{i}) \left(\frac{Q_{i+1} - Q_{i}}{2} + Q_{i} \right)$$

$$= (P_{i+1} - P_{i}) \left(\frac{Q_{i+1} + Q_{i}}{2} \right)$$

(f)

$$\begin{split} I(\varphi) &\underset{\text{d'après 2.(b)}}{=} 1 - 2 \int_{0}^{1} \varphi(t) dt &= 1 - 2 \int_{P_{0}}^{P_{n}} \varphi(t) dt \\ &= 1 - 2 \left(\int_{P_{0}}^{P_{1}} \varphi(t) dt + \int_{P_{1}}^{P_{2}} \varphi(t) dt + \ldots + \int_{P_{n-1}}^{P_{n}} \varphi(t) dt \right) \\ &= 1 - 2 \sum_{i=0}^{n-1} \int_{P_{i}}^{P_{i+1}} \varphi(t) dt \\ &= 1 - 2 \sum_{i=0}^{n-1} (P_{i+1} - P_{i}) \left(\frac{Q_{i+1} + Q_{i}}{2} \right). \end{split}$$

- 12. Nous allons maintenant étudier l'application correspondante pour la classe II. On pose $P_0 = R_0 = 0$ et pour $i \in [\![1,n]\!]$, $P_i = \sum_{h=1}^i p_h$ et $R_i = \sum_{h=1}^i r_h$. De même, on définit pour i élément de $[\![0,n]\!]$, $\Pi_i = 1 P_{n-i}$. On considère l'application ψ de $[\![0,1]\!]$ dans $[\![0,1]\!]$ telle que pour tout $i \in [\![0,n]\!]$, $\psi(P_i) = R_i$ et pour tout entier $i \in [\![0,n-1]\!]$, ψ est affine sur le segment $[\![P_i,P_{i+1}]\!]$.
 - (a) La pente de la droite passant par les points de coordonnées (P_{i-1}, R_{i-1}) et (P_i, R_i) est $v_i = \frac{R_i R_{i-1}}{P_i P_{i-1}} = \frac{r_i}{p_i}$ pour $i \in [\![1, n]\!]$.
 - (b) On considère l'application ψ^* définie pour tout $t \in [0,1]$, par $\psi^*(t) = 1 \psi(1-t)$.
 - i. D'après l'énoncé, on a

•
$$p_1 = \frac{1}{2}$$
 et $r_1 = \frac{2}{3}$ donc $(P_1, R_1) = (p_1, r_1) = \left(\frac{1}{2}, \frac{2}{3}\right)$.

•
$$p_2 = \frac{1}{4}$$
 et $r_2 = \frac{1}{6}$ donc $(P_2, R_2) = (p_1 + p_2, r_1 + r_2) = \left(\frac{3}{4}, \frac{5}{6}\right)$.

•
$$p_3 = \frac{1}{4}$$
 et $r_3 = \frac{1}{6}$ donc $(P_3, Q_3) = (p_1 + p_2 + p_3, r_1 + r_2 + r_3) = (1, 1)$.

Pour tracer ψ , n place les points de coordonnées $(P_i, R_i)_{0 \le i \le 3}$ et on les relie par des segment.

De plus, pour tout $i \in [0, n-1]$, ψ est affine sur $[P_i, P_{i+1}]$ et vaut $\psi(t) = v_{i+1}(t-P_i) + R_i$, donc ψ^* est affine sur $\{t \in [0,1] \mid P_i \le 1-t \le P_{i+1}\} = \{t \in [0,1] \mid 1-P_{i+1} \le t \le 1-P_i\} = [1-P_{i+1}; 1-P_i] = [\Pi_{n-i-1}; \Pi_{n-i}]$ car elle vaut $\psi^*(t) = 1 - v_{i+1}(1-t-P_i) + R_i$.

En posant le changement d'indice $j=n-i, \psi^*$ est donc affine sur les segment $[\Pi_{j-1}; \Pi_j]$, pour tout $j \in [1, n]$. De plus,

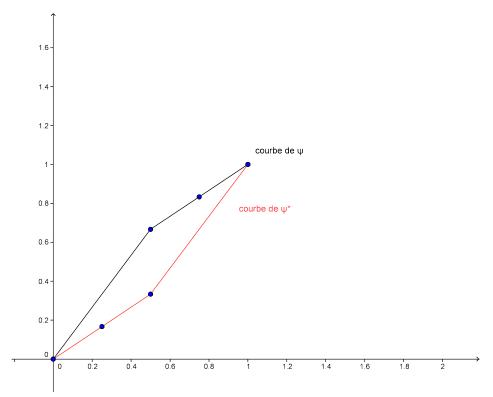
•
$$\Pi_0 = 1 - P_3 = 0$$
 et $\psi^*(\Pi_0) = 1 - \psi(1 - \Pi_0) = 1 - \psi(P_3) = 1 - R_3 = 0$.

•
$$\Pi_1 = 1 - P_2 = \frac{1}{4}$$
 et $\psi^*(\Pi_1) = 1 - \psi(1 - \Pi_1) = 1 - \psi(P_2) = 1 - R_2 = \frac{1}{6}$.

•
$$\Pi_2 = 1 - P_1 = \frac{1}{2}$$
 et $\psi^*(\Pi_2) = 1 - \psi(1 - \Pi_2) = 1 - \psi(P_1) = 1 - R_1 = \frac{1}{3}$.

•
$$\Pi_3 = 1 - P_0 = 1$$
 et $\psi^*(\Pi_3) = 1 - \psi(1 - \Pi_3) = 1 - \psi(P_0) = 1 - R_0 = 1$.

Pour tracer ψ^* , on place les points de coordonnées $(\Pi_i, \psi^*(\Pi_i))_{0 \le i \le 3}$ et on les relie par des segment.



ii. On admet que ψ étant continue et la suite (v_i) de ses pentes étant décroissante (d'après 10.(c)), la fonction ψ est concave.

Montrons alors que ψ^* est convexe :

$$\forall (t_1, t_2) \in J^2, \ \forall \lambda \in [0, 1],$$

$$\psi^{*}(\lambda t_{1} + (1 - \lambda)t_{2}) = 1 - \psi \left(1 - (\lambda t_{1} + (1 - \lambda)t_{2})\right)
= 1 - \psi \left(\frac{\lambda + 1 - \lambda}{\lambda} - \lambda t_{1} - (1 - \lambda)t_{2}\right)
= 1 - \psi \left(\lambda + 1 - \lambda - \lambda t_{1} - (1 - \lambda)t_{2}\right)
= 1 - \psi \left(\frac{\lambda(1 - t_{1}) + (1 - \lambda)(1 - t_{2})}{\lambda(1 - t_{1}) + (1 - \lambda)\psi(1 - t_{2})} \right)
= \lambda + (1 - \lambda) - \lambda \psi \left(1 - t_{1}\right) - (1 - \lambda)\psi(1 - t_{2})
= \lambda \left(1 - \psi(1 - t_{1})\right) + (1 - \lambda)\left(1 - \psi(1 - t_{2})\right)$$

iii. cf question 12.(b)i.

iv. On a pour tout
$$i \in [0, n]$$
, $\psi^*(\Pi_i) = 1 - \psi(1 - \Pi_i) = 1 - \psi(P_{n-1}) = 1 - R_{n-i}$.

La pente de ψ^* sur $[\Pi_{i-1}, \Pi_i]$ est donc
$$\frac{1 - R_{n-i} - (1 - R_{n-(i-1)})}{\Pi_i - \Pi_{i-1}} = \frac{R_{n-i+1} - R_{n-i}}{1 - P_{n-i} - (1 - P_{n-(i-1)})} = \frac{R_{n-i+1} - R_{n-i}}{P_{n-i+1} - P_{n-i}} = \frac{r_{n-i+1}}{p_{n-i+1}} = v_{n-i+1}$$

13. (a) Si $\varphi = \psi^*$ alors elle ont mêmes pentes donc , pour tout $i \in [\![1,n]\!], \ u_i = v_{n-i+1}$. Or.

$$\bullet \ \frac{\varepsilon_i}{\varepsilon} = \frac{\frac{x_i}{n_i}}{\frac{X}{N}} = \frac{\frac{x_i}{X}}{\frac{n_i}{N}} = \frac{q_i}{p_i} = u_i \ .$$

$$\bullet \ \frac{1-\varepsilon_{n-i+1}}{1-\varepsilon} = \frac{1-\frac{x_{n-i+1}}{n_{n-i+1}}}{1-\frac{X}{N}} = \frac{\frac{n_{n-i+1}-x_{n-i+1}}{n_{n-i+1}}}{\frac{N-X}{N}} = \frac{\frac{y_{n-i+1}}{n_{n-i+1}}}{\frac{Y}{N}} = \frac{\frac{y_{n-i+1}}{Y}}{\frac{n_{n-i+1}}{N}} = \frac{r_{n-i+1}}{p_{n-i+1}} = v_{n-i+1}$$

Ainsi, par égalité des pentes.

$$\frac{\varepsilon_i}{\varepsilon} = \frac{1 - \varepsilon_{n-i+1}}{1 - \varepsilon}.$$

(b)

(c) Nous avons montré aux 2 questions précédentes $\begin{cases} \frac{\varepsilon_i}{\varepsilon} & + \frac{\varepsilon_{n-i+1}}{1-\varepsilon} & = \frac{1}{1-\varepsilon} \\ \varepsilon_i & +\varepsilon_{n-i+1} & = 2\varepsilon \end{cases}$ En effectuant le pivot $L_2 < -(1-\varepsilon)L_1 - L_2$, on obtient :

En effectuant le pivot
$$L_2 < -(1-\varepsilon)L_1 - L_2$$
, on obtient

$$\varepsilon_i(1-2\varepsilon) = \varepsilon(1-2\varepsilon)$$

(d) On suppose que $\varepsilon \neq \frac{1}{2}$, alors $1 - 2\varepsilon \neq 0$. On divise l'égalité précédente par $1 - 2\varepsilon$, on obtient : pour tout i appartenant à $[\![1,n]\!]$, $\varepsilon_i = \varepsilon$. Si φ est égale à son adjointe, alors le pourcentage de femmes (ou plus généralement de personnes

de classe I.) est le même dans toutes les catégories socio-professionnelles. Il n'y a donc aucune inégalité sociale entre les femmes (personnes de classe I.) et les hommes (personnes de classe II.) .