Informatique PT. 2025 - 2026

Mathématiques & Informatique - F. Gaunard

http://frederic.gaunard.com
Lycée Voltaire, Paris 11e. ‘ ,

- Introduction

Ce chapitre présente une introduction & la résolution des jeux d’accessiblité.

Plus précisément; deux joueurs antagonistes (que ’on nomme traditionnellement Alice et Bob) s’affrontent alternativement
dans un jeu.

On ne s’intéresse qu’aux jeux a information totale (ou compléte) et sans hasard; a chaque instant d’une partie, chacun
des deux joueurs a une vision compléte de ’état du jeu, ce qui exclut notamment les jeux de cartes (on ne connait pas le
jeu de l'adversaire ou une partie des cartes n’est pas distribuée...) mais comprend des jeux comme les dames, les échecs, le
go, le Tic-Tac-Toe "Morpion", le Puissance 4 ou encore, et ce sera ’exemple conducteur de ce cours, le jeu de Nim.

A chaque instant de la partie, une décision de coup prise par 1'un des joueurs se fait en fonction de la situation présente et
ne dépend pas des configurations passées, ce qui justifie la terminologie de jeu sans mémoire.

Le jeu de Nim, dans une variante populaire, oppose deux joueurs avec la régle suivante : partant d’un tas de n
allumettes, & tour de role chaque joueur peut en enlever 1, 2 ou 3; le perdant est celui qui prend la derniére allumette.
Il existe des variantes du jeu ou chaque joueur ne peut retirer qu'une ou deux allumettes & chaque tour. Nous suivrons
dans ce cours la premiére version énoncée.

A chaque tour de jeu, chaque joueur connait donc le nombre d’allumettes restantes et décide, en fonction de ce qu’il
voit et d'une stratégie; combien d’allumettes enlever.

On va commencer avec une approche qui fonctionne pour des jeux simples (avec un petit nombre de configurations) : le
calcul des positions gagnantes ou attracteurs. Pour les jeux plus complexes, nous verrons comment batir une stratégie a
l'aide d’une heuristique.

Issue des mathématiques dans les années 1920, la théorie des jeux permet de prévoir le comportement des agents
économiques, en faisant 'hypothése que tout agent (aussi appelé joueur) effectue toujours un choix rationnel visant a
maximiser ses gains et a minimiser ses pertes.

Les fondements mathématiques de la théorie moderne des jeux sont décrits autour des années 1920 par Ernst Zermelo
et Emile Borel, puis développés par Oskar Morgenstern, John von Neumann ou encore John Nash qui regoit en 1994 le
prix Nobel d’économie | Wikipédial.

Le film américain |Un homme d’exception| (A beautiful mind, 2001) est une version hollywoodienne de sa biographie.

https://fr.wikipedia.org/wiki/Th�orie_des_jeux
https://fr.wikipedia.org/wiki/Un_homme_d'exception

2 Théorie des jeux

n Modélisation et résolution de jeux simples

m Graphe biparti et stratégie gagnante

Définition 1. Graphe biparti ou aréne

On modélise le type de jeu a deux joueurs précédemment décrit par un graphe orienté G = (S,.A) biparti (aussi appelé
aréne) :
X L’ensemble des sommets est partitionné en deux sous ensembles : S =S U8y, S NSy =0;
S1 est Iensemble des sommets controlés par Alice, c’est a dire a partir desquels Alice jouera et Sy ceux
controlés par Bob;

X Chaque arc du graphe a une extrémité dans un des deux sous-ensemble et ’autre dans I'autre :
Va = (z,y) € A, [te€Si et ye Sy ou [yeSetxeSy.

Les arcs représentent les transitions possibles entre les états du jeu, c’est a dire les choix possibles que les
joueurs peuvent faire & chacun de leur tour de jeu.

X Un sommet est dit initial s’il n’a pas de prédécesseur et terminal s’il n’a pas de successeur.
X Une partie est alors un chemin du graphe entre un sommet initial et un sommet terminal.

X On suppose que le graphe est a-cycligue (i.e. ne posséde pas de cycle) ce qui garantie que toute partie sera
finie. On parle alors de jeu d’accessibilité.

L’ensemble F' des sommets terminaux se partitionne en trois parties :

X L’ensemble V! des sommets terminaux gagnants pour Alice ;

X L’ensemble V2 des sommets terminaux gagnants pour Bob ;

X L’ensemble N des sommets terminaux représentants un match nul. Selon les jeux, ce dernier ensemble peut
étre vide.

On représente l'aréne du jeu de Nim a 10 allumettes. Chaque sommet représente un nombre d’allumettes avant que le
joueur dont c’est le tour prenne une décision. Chaque arc représente un coup possible pour le joueur qui controle le
sommet dont part cet arc.

Alice 10 8 7 6 5 4 3 2 1 .

\
X L D) > > > >
s 010]0]10]01010

Les sommets représentés par un rectangle sont ceux du premier joueur (Alice) et ceux par un cercle du second (Bob).
Le seul sommet initial est le sommet 10 controlé par Alice (en vert). Les deux joueurs controlent un sommet terminal,
qui est gagnant, le sommet 0 (en rouge).

Exercice 1.

Implémenter, sous forme d’un dictionnaire, ’aréne du jeu de Nim & 10 allumettes.

Définition 2. Stratégie

X Une stratégie pour Alice (resp. Bob) est une fonction ¢ qui & chaque sommet s € S; \ F' (resp. s € So \ F)
associe un sommet s’ € Sy (resp. s’ € S1) tel que (s, s) € A.
Suivre une stratégie ¢ revient a choisir d’aller en s’ = (s) lorsque l'on est en s.

X Une stratégie ¢ est dite gagnante (pour un joueur) depuis un sommet sg si toute partie jouée (par ce joueur)
depuis sp en suivant ¢ méne & sa victoire et ce, peu importe les choix de son adversaire.

X Un sommet est appelé position gagnante (pour un joueur) s’il existe une stratégie gagnante (pour ce joueur)
depuis ce sommet.

En reprenant notre fil rouge du jeu de Nim a 10 allumettes, un exemple de stratégie pour Bob serait de systématiquement
retirer une seule allumette. Elle n’est clairement pas gagnante.

Alice 10 8 7 6) 4 3 2 1 .

OOOOEOOOO®

Si l’on représente chaque sommet du graphe biparti sous la forme (j,4) ou j € [0, 10] est un nombre d’allumettes et
i € [0, 1] correspond au joueur (1 pour Alice, 2 pour Bob), la stratégie ci-dessus est alors

410:(.7.72) € [[1,9H X{Z}'—>(.j_171)

1z Résoudre un jeu d’accessibilité revient donc a déterminer les positions gagnantes (de chacun des joueurs) et une stratégie
pour chacun définie a partir de chaque position gagnante que le joueur controle.
Pour cela, on construit 1’attracteur de chaque joueur, que I’on construit par récurrence.

m Calcul des attracteurs

Définition 3. Attracteur (d’Alice)
Soient G = (S, A) avec S = S§; U S, un graphe biparti et V! I'ensemble des sommets terminaux gagnants (définissant
une victoire) pour Alice.
On définit la suite (#!);>0 de sous-ensembles de sommets comme suit :
X o =Vi
X Pour ¢+ > 0, ,Q/Zﬂ_l est donc I'ensemble des sommets déja dans 7', des sommets controlés par Alice ayant
au moins un successeur dans 7! et des sommets contrdlés par Bob dont tous les successeurs sont dans <7,
autrement dit

A= U{s€S 35 €A}, (5,8) e AJU{s€S:Vs €S, (5,8) e A= 5 € I}

On appelle attracteur d’Alice la réunion croissante /! des sous-ensembles suivants

1_+oo 1
o' =]
=0

Par construction, 7 représente 'ensemble des positions gagnantes pour Alice lui permettant de gagner en au plus i coups.

4 Théorie des jeux

On peut naturellement définir de maniére analogue I’attracteur de Bob & partir de I’ensemble V2 des sommets terminaux
gagnants controlés par celui-ci :

X g =V2
X Pour i > 0,
A =AU s €Sy 38 € 2, (5,8) e AJU{s€ S :Vs €8, (5,8) € A= 5§ € I},

puis

2_+OO 2
o =]
=0

1= On peut montrer que l'attracteur d’Alice est alors exactement I’ensemble des positions gagnantes pour Alice.
Si 'on peut faire match nul dans le jeu considéré, il faut calculer indépendamment les attracteurs d’Alice et Bob.
Sinon, les deux ensemble sont complémentaires. En particulier, on a le résultat suivant.

Il existe une stratégie gagnante pour Alice (resp. Bob) & partir de s si et seulement si s € &1 (resp. s € &7?).

Exercice 2.
Déterminer «a la mainy» les attracteurs d’Alice et de Bob pour le jeu de Nim a 5 allumettes. Commenter.

Algorithme de calcul des attracteurs

La construction de l'attracteur se fait donc par un parcours du graphe «a I'envers» a partir de V! (ou de V?) et
en remontant les arcs, donc par un parcours (en largeur) du graphe transposé, et présente donc une complexité en
O(Card(S) + Card(A)). Il sera utile de calculer les degrés sortants des sommets de G (qui seront les degrés entrants dans
G") pour gérer la condition «tout successeur d’un sommet de Sy aboutit 4 un sommet attracteur».

def transpose(G):
GT ={v : [] for v in G}
for s in G:
for v in G[s]
GT[v] .append(s) [v]
return GT

def degres_sortants (G):
return {v:1len(G[v]) for v in G}

On peut alors écrire I’algorithme de calcul de I'attracteur, avec une fonction de parcours. La fonction renvoie I'attracteur
d’Alice sous la forme d’un dictionnaire dont les clés sont ses positions gagnantes.

def attracteur (G,S1,V1):
nG = degres_sortants (G)
GT = transpose (G)
A = {}
def parcours(s):
if s not in A:
Als] = True
for v in GT[s]:
nG[v] -=1
if v in S1 or nG[v] == O0:
parcours (v)
for s in V1:
parcours (s)
return A

Construction d'une stratégie gagnante

Pour construire, en paralléle du calcul de Pattracteur, une stratégie gagnante pour Alice, il suffit de modifier légérement
lalgorithme précédent ; au moment de lancer parcours(v), on peut poser ¢(v) = s.

def attracteur_avec_strategie(G, S1, V1):
nG = degres_sortants (G)
GT = transpose (G)
A = {}
phi = dict ()

def parcours(s):
if s not in A:
A[s] = True
for v in GT[s]:

nG[v] -= 1
if v in S1 or nG[v] == O0:
if v in S1:
philv] = s

parcours (v)
for s in V1:
parcours (s)

return A, phi

Exercice 3. Jeu de Chomp

On considére une tablette de chocolat rectangulaire (a n lignes et p colonnes) dont le coin supérieur gauche est
empoisonné. Chaque joueur choisit a tour de réle un carré et le mange, ainsi que tous les morceaux situés a la droite et
en dessous du carré choisi. Bien évidemment, le joueur qui n’a plus d’autre choix que de manger le carré empoisonné a
perdu.

On se place dans le cas ici de la tablette avec n = 2 et p = 3.

&)

1. Représenter 'aréne de ce jeu. Chaque sommet est une configuration de la tablette de chocolat.
2. Méthode de 'attracteur.
a. Déterminer les positions gagnantes pour Alice.
b. Existe-t-il une stratégie gagnante pour Alice 7 Si oui, en déterminer une.
3. Montrer que, si (n,p) # (1,1), alors il existe toujours une stratégie gagnante pour Alice.
On distinguera les cas n=1,p> 1 puis n > 1,p =1 puis n > 1,p > 1 avec, dans ce dernier cas, un raisonnement
par l’absurde.

n Algorithme min-max

Dans cette section, on considére toujours un jeu modélisé par un graphe biparti G = (S, 4) ou: § = S U Ss.

En théorie, le calcul des attracteurs présenté dans la section précédente permet de déterminer les stratégies gagnantes et de
jouer de maniére parfaite.
En pratique, I’algorithme permettant de les déterminer n’est pas utilisable pour des jeux complexes, c¢’est-a-dire lorsque le

6 Théorie des jeux

graphe associé G est trop gros. Par exemple, on estime que le nombre d’états du jeu est de I'ordre de 1032 pour les dames,
d’au moins 1046 pour les échecs et de 10'%° pour le go rendant le parcours du graphe inexploitable.

Pour contourner cette difficulté, nous allons présenter ’algorithme min-max qui ne nécessite pas une exploration compléte
du graphe du jeu. En contre-partie, la stratégie obtenue via cette approche ne sera plus parfaite en général.

m Heuristique

L’algorithme min-max repose sur une fonction permettant d’évaluer la qualité de chaque position du jeu.

Définition 4. Heuristique
Une heuristique pour le jeu étudié est une fonction b : & — R U {—o00, +00} de sorte que pour toute position p € S
du jeu :

X plus h(p) est grand, meilleure est la position pour Alice ;
X plus h(p) est petit, meilleure est la position pour Bob.

= En pratique :
X si s €S est un sommet final représentant une victoire d’Alice, alors on pose : h(s) = +0o0 ;
X si s €S est un sommet final représentant une victoire de Bob, alors on pose : h(s) = —cc.

Le mot «heuristique» signifie «qui sert & la découverte» ou «qui est propre & guider une recherchey.

= Toujours en pratique, une heuristique est souvent construite de maniére expérimentale.

Pour illustrer la notion d’heuristique, on s’intéresse au jeu Puissance 4. Le but du jeu est d’aligner une suite de 4 pions
de méme couleur dans une grille rectangulaire composée de 6 lignes et 7 colonnes.

Chaque joueur dispose de 12 pions d’'une méme couleur. Les deux joueurs placent tour & tour un pion dans la colonne
de leur choix. Le pion coulisse alors jusqu’a la position la plus basse possible dans ladite colonne, & la suite de quoi,
c’est & l'adversaire de jouer.

Le vainqueur est le joueur qui réalise en premier un alignement (horizontal, vertical ou diagonal) consécutif d’au moins
4 pions de sa couleur. Si toutes les cases de la grille de jeu sont remplies et qu’aucun des deux joueurs n’a réalisé un tel
alignement, la partie est déclarée nulle.

Dans la suite, on suppose qu’Alice joue avec des pions jaunes et que Bob joue avec des pions rouges.

On commence par construire une heuristique pour ce jeu. Pour ce faire, on attribue a4 chaque case du jeu le nombre
d’alignements possibles de 4 jetons contenant cette case. Le valeurs attribuées sont reportées dans le tableau ci-dessous :

0000000 o [a]sfr]s[4]
.'."“ 416 |8 |10]8 6|4
....... 58 |11 [13[11| 8 | 5
R‘.‘R R' 58 |11][13|11] 8 |5
R....R R 416 |8 |10]8 6|4
..R...R 3145|7543

Ensuite, pour calculer ’heuristique d’une position (non finale) du jeu, on calcule la somme des valeurs des cases
controlées par Alice & laquelle on retranche la somme des valeurs des cases controlées par Bob.
Par exemple, ’heuristique de la position s représentée ci-dessus est

h(s)=(3+4+7+54+4+6+8+11)—(5+3+4+6+44+5+11+8) =2,

m Principe de l'algorithme

Dans cette sous-section, on suppose que l'on dispose d’une heuristique h: § — RU {—o0, +00}.

Au moment ou l'un des deux protagonistes doit jouer, plusieurs possibilités s’offrent a lui (entre une et sept pour le
puissance 4). Une solution simple pour choisir le coup a jouer consiste a calculer I’heuristique correspondant a chacune
des configurations atteignables et a jouer celle d’heuristique maximale (pour Alice) ou minimale (pour Bob). Il est alors
coutume de renommer Alice en Max et Bob en Min.

Mais Alice peut aussi tenir compte du coup que va jouer Bob ensuite, et donc calculer ’heuristique de chacune des
positions que Bob pourra atteindre. On peut répéter ce raisonnement, mais le nombre de configurations a examiner croit
exponentiellement, donc il est nécessaire de limiter la profondeur n de la recherche, et on obtient alors un algorithme
glouton (qui ne donnera pas nécessairement une solution optimale).

Pour illustrer le principe de 'algorithme min-max, reprenons l'exemple du jeu Puissance 4. On représente les états
controlés par Alice par des ronds bleus et les états controlés par Bob par des carrés rouges.

Afin d’avoir des arbres de taille raisonnable, on limite les coups possibles des deux joueurs & placer un pion dans une des
trois colonnes centrales.

On part de la position du jeu Puissance 4 représentée ci-avant: c’est & Alice de jouer.

Une premiére possibilité pour effectuer le choix du coup a jouer est de calculer I'heuristique de chacune des positions
atteignables, puis de rejoindre celle dont ’heuristique est maximale. En effet, Alice cherche a se trouver dans une position
avec une forte heuristique.

Pour le calcul de I'heuristique, on ajoute a ’heuristique de la position précédente I’heuristique de la case ot I'on va placer
le pion.
Les trois positions atteignables pour Alice et leur heuristique :

ROOGOORRO
ROOOORM®
oO0RrROOOR

h(s)=2+8 =10

0000000
0000000
0000000
ROOGOORRO
ROOOORR
oorO0OR

ROOGOORRO
ROOOORR
oorO0OR

h(s) =2+10 = 12 h(s) =2+8=10

Alice va donc choisir de jouer en colonne centrale. On pouvait représenter la situation a I’aide d’un arbre.

Ce premier arbre a une profondeur de 1.

b (e () (o)
Max ()

Une seconde possibilité pour effectuer le choix du coup & jouer pour Alice est de tenir en plus compte du coup
suivant qui sera joué par Bob : elle peut calculer ’heuristique des positions atteignables en deux coups, puis de choisir
le coup lui permettant d’obtenir une heuristique maximale (en supposant que Bob va jouer de sorte & minimiser I’heuristique).

Ci-dessous 'arbre de profondeur 2.

8 Théorie des jeux

h =i 0 2 4 =il 4 2 0 5
Min —1 —1 0
Max 0

En adoptant cette stratégie, Alice choisit de jouer dans la colonne de droite.

On peut poursuivre. Une troisiéme possibilité, pour effectuer le coup du choix a effectuer pour Alice, est d’explorer toutes
les possibilités pour les trois coups suivants.
On représente alors 'arbre de profondeur 3.

h 10 /\+oo\ 7 11 /\+o9/\ 8 13 /\+oo\ 7 15 \N17 /\12 J\+oo/\12 N\ T +o9/\17 /\ 9 13 AN12 A7 8 13 /\5 13 /\15

s (@) (9 SINGE :

Min +o0 17 13

MaX +oo
En adoptant cette stratégie, Alice choisit de jouer dans la colonne de gauche (et sera vainqueur en 3 coups).

Pour calculer le meilleur coup d’Alice avec une recherche a la profondeur n, il faut donc commencer par calculer la valeur
de I'heuristique de toutes les positions atteignables en n coups. Ensuite, il faut distinguer deux cas :

X si n est impair, Alice va jouer le dernier coup, donc 'antécédent de chacun des sommets de profondeur n se verra
attribuer la valeur maximale de ses successeurs ;

X si n est pair, Bob va jouer le dernier coup, donc 'antécédent de chacun des sommets de profondeur n se verra
attribuer la valeur minimale de ses successeurs.

Pour implémenter cet algorithme, nous allons écrire deux fonctions récursives:

X maximin(p,n) (destinée a Alice) va chercher & maximiser I’heuristique aprés n coups en partant de la position p,
en supposant que son adversaire joue au mieux ;

X minimax(p,n) (destinée a Bob) va chercher & minimiser ’heuristique aprés n coups en partant de la position p, en
supposant que son adversaire joue au mieux.

Ces deux fonctions sont mutuellement récursives : pour calculer maximin(p,n) on calcule pour chaque position py, ..., px
atteignable a partir de p la valeur de ’heuristique des positions minimax (pi,n-1) avant de choisir la position conduisant &

la valeur maximale.

De maniére symétrique, pour calculer minimax (p,n) on calcule pour chaque position py, ...

, P atteignable & partir de p la

valeur de I'heuristique des positions maximin(pi,n-1) avant de choisir la position conduisant a la valeur minimale.
Pour la rédaction de I'algorithme, on suppose définies la fonction h qui prend pour argument une position du jeu et renvoie
la valeur de son heuristique, ainsi que la fonction successeurs qui renvoie la liste des positions atteignables a partir de la

position p.

def maximin(p,n):
if n==0 or successeurs(p)==
return h(p)
maxi=-np.inf
for pk in successeurs(p):
s=minimax (pk,n-1)
if s>maxi:
maxi=s
return maxi

[1:

def minimax(p,n):
if n==0 or successeurs(p)==[]:
return h(p)
mini=np.inf
for pk in successeurs(p):
s=maximin (pk,n-1)
if s<mini:
mini=s
return mini

L’algorithme Min-max prend en parameétre une profondeur n, qui limite la recherche & une certaine hauteur dans
I’arbre de jeu. Dans le pire des cas, cette profondeur n correspond & la hauteur compléte de ’arbre, ce qui signifie que
tous les états possibles du jeu sont explorés jusqu’aux feuilles.

La complexité temporelle de P’algorithme est alors donnée par O(p™), ol p est le facteur de branchement, c’est-a-dire le
nombre moyen d’actions possibles & chaque étape du jeu, et n est la profondeur maximale explorée.

Ainsi, plus p ou n sont grands, plus le nombre total d’états & explorer augmente de fagon exponentielle.

On représente dans le tableau suivant les tailles des arbres de jeu pour différents jeux :

Jeu Branchement Profondeur Taille estimée
Morpion (Tic-Tac-Toe) 3 9 26830
Puissance 4 7 42 1014
Dames 8 50 10%°
Echecs 35 80 10"?° (nombre de Shannon)
Go 250 300+ 107

Exercice 4.

Tic-Tac-Toe

Les deux joueurs qui s’affrontent doivent remplir, chacun & leur tour, une case d’une grille 3 x 3 avec le symbole
qui leur est attribué :) ou x. Le gagnant est celui qui arrive & aligner trois symboles identiques, horizontalement,
verticalement ou en diagonale. Il est coutume de laisser le joueur jouant x effectuer le premier coup de la partie.

Afin de définir 'heuristique de chaque position, on commence par un peu de terminologie. Les lignes/colonnes/diagonales
sont dites gagnables si elles ne contiennent que des x, des (), ou sont vides. Une ligne est presque gagnante lorsqu’elle
contient exactement deux X ou deux () et aucune piéce adverse.

différentes positions ci-dessous :

O[X

Configuration accessible Score

Lignes/colonnes/diagonales gagnables pour x ou O +1 Etat terminal Score
Lignes/colonnes/diagonales presque gagnantes pour X +3 Victoire immédiate pour x 400
Lignes/colonnes/diagonales presque gagnantes pour O -3 Victoire immédiate pour O —00
Centre controlé par x +2 Egalité (plateau complet sans gagnant) 0
Centre controlé par O -2

Appliquer l'algorithme min-max avec une profondeur de 2 pour déterminer le prochain coup d’Alice & partir des

X

O

	7 Théorie des jeux
	Introduction
	Modélisation et résolution de jeux simples
	Graphe biparti et stratégie gagnante
	Calcul des attracteurs

	Algorithme min-max
	Heuristique
	Principe de l'algorithme

