Mathématiques - F. Gaunard http://frederic.gaunard.com Lycée Voltaire, Paris 11e.

Des séries et des hommes - Éléments de Solution

Sélection d'exercices

Exercice 5.13.

Étudier la convergence et calculer la somme de la série de terme général u_n dans les cas suivants:

$$i. \ u_n = \frac{1}{(3n+1)(3n+4)}$$

i.
$$u_n = \frac{1}{(3n+1)(3n+4)}$$
 ii. $u_n = \ln\left(\frac{\ln^2(n+1)}{\ln(n)\ln(n+2)}\right)$ *iii.* $u_n = \frac{5}{(n+1)!}$.

$$iii. \ u_n = \frac{5}{(n+1)!}.$$

Solution.

i. La décomposition en éléments simples donne $u_n = \frac{1}{3} \left(\frac{1}{3n+1} - \frac{1}{3(n+1)+1} \right)$: la somme est télescopique. On peut ainsi calculer S_n , puis en passant à la limite on trouve $\sum_{n=0}^{\infty} u_n = \frac{1}{3}$.

ii. Pour $n \ge 2, u_n$ est bien défini et on remarque

 $u_n = 2\ln(\ln(n+1)) - \ln(\ln(n)) - \ln(\ln(n+2)) = (\ln(\ln(n+1)) - \ln(\ln(n))) + (\ln(\ln(n+1)) - \ln(\ln(n+2))) \cdot (\ln(n+1)) - \ln(\ln(n+1)) - \ln(\ln(n+2)) = (\ln(\ln(n+1)) - \ln(\ln(n+2))) + (\ln(\ln(n+1)) - \ln(\ln(n+2))) = (\ln(\ln(n+1)) - \ln(\ln(n+2))) + (\ln(\ln(n+2)) - \ln(\ln(n+2))) + (\ln(\ln(n+2)) - \ln(\ln(n+2))) = (\ln(\ln(n+2)) - \ln(\ln(n+2))) + (\ln(\ln(n+2)) - \ln(\ln(n+2))) + (\ln(\ln(n+2))) + (\ln(\ln(n+2)) - \ln(\ln(n+2))) = (\ln(\ln(n+2)) - \ln(\ln(n+2))) + (\ln(\ln(n+2)) - \ln(\ln(n+2)) + (\ln(n+2)) + (\ln(n+2))$

On reconnaît ainsi deux sommes télescopiques, et on en déduit

$$\sum_{n=2}^{N} u_n = \ln(\ln(N+1)) - \ln(\ln(2)) + \ln(\ln(3)) - \ln(\ln(N+2)).$$

Or $\lim_{N\to+\infty}\frac{\ln(N+1)}{\ln(N+2)}=1$, donc $\lim_{p\to+\infty}\sum_{n=0}^pu_n=\ln(\ln(3))-\ln(\ln(2))$. La série converge et sa somme vaut

iii. On a

$$\sum_{n=0}^{N} u_n = 5 \sum_{n=0}^{N} \frac{1}{(n+1)!} = 5 \sum_{n=1}^{N+1} \frac{1}{n!} = 5 \left(\sum_{n=0}^{N+1} \frac{1}{n!} - 1 \right) \xrightarrow[N \to +\infty]{} 5(e-1).$$

Exercice 5.14.

Déterminer la nature de chacune des séries

$$i. \sum_{k\geq 2} \ln\left(1 + \frac{1}{k\sqrt{k}}\right), \qquad ii. \sum_{k\geq 2} \frac{1}{k^2 \ln(k)}, \qquad iii. \sum_{k\geq 0} \left(\exp\left(\frac{k^2 + 1}{k^4 + 1}\right) - 1\right).$$

$$iv. \sum_{k\geq 1} \left((k+1)^{1/4} - (k-1)^{1/4}\right), \qquad v. \sum_{k\geq 1} \left(1 - \left(1 + \frac{1}{k^2}\right)^k\right).$$

$$vi. \sum_{n\geq 1} \frac{\sqrt{n}}{n^2 + \sqrt{n}}, \qquad vii. \sum_{n\geq 1} n \ln\left(\frac{1 + \sqrt{n}}{\sqrt{n}}\right), \qquad viii. \sum_{n\geq 1} \frac{\ln(n)}{n^{3/2}}, \qquad ix. \sum_{n\geq 1} \frac{(-1)^n}{n(n+1)}$$

Exercice 5.15.

Étudier la nature des séries de terme général u_n dans chacun des cas suivants :

$$i. \ u_n = \ln\left(\frac{1}{n}\right) \qquad ii. \ u_n = e^{-n^2} \qquad iii. \ u_n = e^{-\sqrt{n}} \qquad iv. \ u_n = 2^n \mathrm{sh}\left(\frac{1}{n}\right)$$

$$v. \ u_n = e - \left(1 + \frac{1}{n}\right)^n \quad vi. \ u_n = \frac{1}{n}\left(e^{\frac{1}{n}} - e^{\frac{1}{n+1}}\right) \quad vii. \ u_n = \frac{\left(n!\right)^3}{(4n)!} \qquad viii. \ u_n = \frac{(-1)^n}{(\ln(n))^n}$$

$$ix. \ u_n = \frac{\binom{2^n}{n}}{n \cdot 5^n} \qquad x. \ u_n = \int_0^{1/n} \frac{\sin t}{1 + \sqrt{t}} \mathrm{d}t \qquad xi. \ u_n = \frac{2^n}{n^2} \left(\sin\beta\right)^{2n} \quad xii. \ u_n = \frac{\alpha^n}{1 + \alpha^{2n}}$$

$$0 \ \alpha \in \mathbb{R} \ \mathrm{et} \ \beta \in \left[0, \frac{\pi}{2}\right].$$

Solution.

- i. On a $u_n = \ln\left(\frac{1}{n}\right) \xrightarrow[n \to +\infty]{} -\infty$ donc la série diverge (très) grossièrement.
- ii. On a $0 \le u_n \le e^{-n}$, donc la série est à termes positifs, et par comparaison avec une série géométrique convergente (de raison $\frac{1}{e}$), il vient que $\sum u_n$ converge.
- iii. On a $u_n = e^{-\sqrt{n}} = o\left(\frac{1}{n^2}\right)$ donc la série converge (absolument) par le théorème de comparaison par négligeabilité.
- iv. On effectue un développement asymptotique de l'exponentielle, car $\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$:

$$u_n = 2^{n-1} \left(e^{1/n} - e^{-1/n} \right)$$
$$= 2^{n-1} \left(\frac{2}{n} + o \left(\frac{1}{n} \right) \right)$$
$$\underset{+\infty}{\sim} \frac{2^n}{n} \xrightarrow[n \to +\infty]{} +\infty$$

Donc la série diverge grossièrement.

v. On effectue un développement asymptotique:

$$u_n = e - e^{n \ln\left(1 + \frac{1}{n}\right)}$$

$$= e - e^{n\left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right)}$$

$$= e \left(1 - e^{-\frac{1}{2n} + o\left(\frac{1}{n}\right)}\right)$$

$$= e \left(\frac{1}{2n} + o\left(\frac{1}{n}\right)\right)$$

$$\stackrel{\sim}{+\infty} \frac{e}{2n}$$

On en déduit, par théorème de comparaison avec une série de Riemann, que la série diverge.

vi. On effectue un développement asymptotique:

$$u_n = \frac{1}{n} \left(e^{\frac{1}{n}} - e^{\frac{1}{n+1}} \right)$$

$$= \frac{1}{n} \left(\frac{1}{n} + \frac{1}{2n^2} - \frac{1}{n+1} - \frac{1}{2(n+1)^2} + o\left(\frac{1}{n^2}\right) \right)$$

$$= \frac{1}{n} \left(\frac{1}{n(n+1)} + \frac{2n+1}{2n^2(n+1)^2} + o\left(\frac{1}{n^2}\right) \right)$$

$$= \frac{1}{n} \left(\frac{1}{n(n+1)} + o\left(\frac{1}{n^2}\right) \right)$$

$$\stackrel{\sim}{\underset{+\infty}{\sim}} \frac{1}{n^3}$$

Donc la série converge, par théorème de comparaison avec une série de Riemann.

vii. On a $u_n > 0$ et $\frac{u_{n+1}}{u_n} = \frac{\left(n+1\right)^3}{\left(4n+4\right)\left(4n+3\right)\left(4n+2\right)\left(4n+1\right)} \xrightarrow[n \to +\infty]{} 0 < 1$ donc la série converge par la règle de d'Alembert.

- viii. On peut montrer aisément qu'il s'agit d'une série alternée, car $v_n = \frac{1}{(\ln(n))^n}$ est décroissante, et donc qu'elle converge. Si on n'y pense pas, on peut procéder autrement : on a $n^2 = e^{2\ln(n)}$ et $(\ln(n))^n = e^{n\ln(\ln(n))}$. Or pour n assez grand on a $\ln(\ln(n)) \geqslant 2$ et $n \geqslant \ln n$ donc $0 \leqslant \frac{1}{(\ln(n))^n} \leqslant \frac{1}{n^2}$. Par comparaison à une série de Riemann, cette série est donc absolument convergente.
- ix. On a $u_n > 0$. Par d'Alembert,

$$\frac{u_{n+1}}{u_n} = \frac{1}{5} \cdot \frac{(2n+2)(2n+1)n}{(n+1)^3} \xrightarrow[n \to +\infty]{} \frac{4}{5} < 1$$

donc la série converge.

- x. On a $0 \le \sin t \le t$ et $\frac{1}{1+\sqrt{t}} \le 1$ pour tout $t \ge 0$, donc par croissance de l'intégrale $0 \le u_n \le \int_0^{1/n} t t = \frac{1}{2n^2}$. Cela prouve que la série converge, par comparaison à une série de Riemann.
- xi. On a déjà $u_n = \frac{\left(2\sin^2\beta\right)^n}{n^2}$. Pour a > 1 on a $n^2 = o\left(a^n\right)$, donc si $a = 2\sin^2\beta > 1$ la série diverge grossièrement.

Par contre, si $2\sin^2\beta \leqslant 1$ alors $0 \leqslant u_n \leqslant \frac{1}{n^2}$ et la série converge par comparaison avec une série de Riemann. Finalement la série converge si et seulement si $\beta \in \left[0, \frac{\pi}{4}\right]$.

xii.
$$u_n = \frac{\alpha^n}{1 + \alpha^{2n}}$$
: si $|\alpha| < 1$ alors

$$\alpha^{2n} \xrightarrow[n \to +\infty]{} 0$$

donc $|u_n| \underset{+\infty}{\sim} |\alpha|^n$: la série converge absolument par comparaison avec une série géométrique.

Si $|\alpha| > 1$ alors

$$\alpha^{2n} \xrightarrow[n \to +\infty]{} +\infty$$

et par suite $|u_n| \sim \frac{1}{|\alpha|^n}$: cette fois encore la série converge absolument par comparaison avec une série géométrique.

Enfin si $|\alpha|=1$ alors $|u_n|=\frac{1}{2}$: la série diverge grossièrement .

Exercice 5.16.

Montrer que la série $\sum (-1)^n \ln \left(1 + \frac{1}{n}\right)$ converge. Est-elle absolument convergente ?

Solution. On vérifie aisément que la suite (u_n) définie par $u_n = \ln\left(1 + \frac{1}{n}\right)$ décroît vers 0, c'est donc une série alternée, qui converge par théorème de cours.

Par contre il n'y a pas convergence absolue, puisque $|(-1)^n u_n| = \ln\left(1 + \frac{1}{n}\right) \underset{n \to +\infty}{\sim} \frac{1}{n}$, et $\sum \frac{1}{n}$ diverge par Riemann. \square

Soit $u_n = \sqrt{n} + a\sqrt{n+1} + b\sqrt{n+2}$, où $(a,b) \in \mathbb{R}^2$.

- 1. Déterminer les valeurs de a et b pour les quelles la série $\sum u_n$ converge.
- 2. Pour ces valeurs, trouver sa somme et un équivalent simple du reste d'ordre N.

Solution.

1. On procède par analyse-synthèse.

X Analyse. Soit $(a,b) \in \mathbb{R}^2$ tel que $\sum u(n)$ converge

Pour $n \in \mathbb{N}^*$, on a:

$$un = \sqrt{n} \left[1 + a\sqrt{1 + \frac{1}{n}} + b\sqrt{1 + \frac{2}{n}} \right] \underset{+\infty}{=} \sqrt{n} \left[1 + a + b + \frac{a + 2b}{2n} + o\left(\frac{1}{n}\right) \right].$$

Supposons que $1+a+b\neq 0$. Dans ce cas, $u_n \underset{+\infty}{\sim} (1+a+b)\sqrt{n} \underset{n\to+\infty}{\longrightarrow} \pm \infty$: impossible car $\sum u_n$ converge.

Donc, nécessairement 1+a+b=0 et $u_n = \frac{a+2b}{2\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)$. Supposons que $a+2b \neq 0$. Dans ce cas, $u_n \sim \frac{a+2b}{2\sqrt{n}}$ de signe constant : par comparaison de séries à termes de

signe constant, cela contredit que $\sum u_n$ converge car la série de Riemann $\sum \frac{1}{n^{\frac{1}{2}}}$ diverge. Donc, par l'absurde, a + 2b = 0.

Finalement,

$$\begin{cases} a+b=-1\\ a+2b=0 \end{cases}$$

et donc (a, b) = (-2, 1).

X Synthèse. Si (a,b)=(-2,1), alors on a :

$$u_n = \sqrt{n} \left[1 - 2\left(1 + \frac{1}{n}\right)^{\frac{1}{2}} + \left(1 + \frac{2}{n}\right)^{\frac{1}{2}} \right] = \sqrt{n} \left[-2 \times \frac{-1}{8n^2} + \frac{-4}{8n^2} + o\left(\frac{1}{n^2}\right) \right].$$

On a alors $u_n \sim \frac{-1}{4n^{\frac{3}{2}}} < 0$ et la série $\sum u_n$ converge par critère de comparaison pour des séries à termes négatifs.

En conclusion, la série $\sum u_n$ converge si et seulement si (a,b)=(-2,1).

2. On prend donc a=-2 et b=1. On a alors $u_n=\sqrt{n}-2\sqrt{n+1}+\sqrt{n+2}$, et pour $N\in\mathbb{N}$, on a :

$$\sum_{n=0}^{N} u_n = \sum_{n=0}^{N} [\sqrt{n} - \sqrt{n+1}] + \sum_{n=0}^{N} [\sqrt{n+2} - \sqrt{n+1}]$$

$$= 0 - \sqrt{N+1} + \sqrt{N+2} - 1 \quad \text{par t\'elescopage}$$

$$= \sqrt{N} \left[-\left(1 + \frac{1}{N}\right)^{\frac{1}{2}} + \left(1 + \frac{2}{N}\right)^{\frac{1}{2}} \right] - 1$$

$$= -1 + \frac{1}{2\sqrt{N}} + o\left(\frac{1}{\sqrt{N}}\right).$$

Par passage à la limite, on obtient $\sum_{n=1}^{\infty} u_n = -1$.

De plus, $R_N = S - S_N \sim -\frac{1}{2\sqrt{N}}$

Exercice 5.18.

On cherche l'ensemble des couples $(a,b) \in (\mathbb{R}_+^*)^2$ tels que la série $\sum \frac{a^k}{1+b^k}$ soit convergente.

- 1. Montrer que si 0 < a < b, alors la série est convergente.
- **2**. On considère $0 < b \le a$.
 - **a**. Traiter les cas b < 1 et b = 1.
 - **b**. Que se passe-t-il pour b > 1?

- 1. Si 0 < a < b alors $0 \le \frac{a^k}{1+b^k} \le \left(\frac{a}{b}\right)^k$ et on compare à une série géométrique convergente pour obtenir la conclusion souhaitée.
- 2. a. Si b = 1 alors a^k/(1+b^k) = a^k/2 et comme a ≥ 1 la série est divergente. Si b < 1, b^k → 0 et a^k/(1+b^k) ~ a^k. Si a < 1, la série converge; si a ≥ 1, la série diverge.
 b. Si b > 1, on a a^k/(1+b^k) ~ (a/b)^k et la série diverge par comparaison à une série géométrique divergente.

Exercice 5.19. Oral Mines-Télécom 2024

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ de classe \mathscr{C}^2 , telle que $\forall x \in \mathbb{R}_+, f''(x) < 0$ et $f'(x) \geq 0$.

- 1. Montrer que la suite $(f'(n))_{n>1}$ converge.
- **2**. Montrer que : $\forall x \ge 1, f(x+1) f(x) \le f'(x) \le f(x) f(x-1)$.
- 3. Montrer que la série $\sum f'(n)$ converge si et seulement si la suite $(f(n))_{n\geq 1}$ est majorée.

Solution.

- 1. Comme f'' < 0 sur \mathbb{R}_+ , la fonction f' est décroissante sur \mathbb{R}_+ donc la suite $(f'(n))_n$ est aussi décroissante. De plus, par hypothèse, $f' \ge 0$ sur \mathbb{R}_+ donc la suite (f'(n)) est minorée. Par **théorème de limite monotone**, elle converge.
- C'est l'inégalité des accroissements finis qu'on applique deux fois (une fois pour chaque inégalité de l'encadrement) en observant que, comme f' est décroissante, f'(x) est le minimum de f' sur [x, x + 1] et aussi le maximum de f' sur [x, x + 1].
 (Observons que f est elle croissante sur R₊ donc f(x + 1) f(x) ≥ 0 et f(x) f(x 1) ≥ 0.)
- 3. Le calcul des sommes partielles permet un encadrement qui fait apparaître des telescopages :

$$f(n+1) - f(1) = \sum_{k=1}^{n} (f(k+1) - f(k)) \le \sum_{k=1}^{n} f'(k) \le \sum_{k=1}^{n} (f(k) - f(k-1)) = f(n) - f(0).$$

- X Si la suite (f(n)) est majorée, alors la suite des sommes partielles $\left(\sum_{k=1}^n f'(k)\right)_n$ est majorée et étant croissante (c'est une suite de sommes de termes positifs), le **théorème de limite monotone** affirme qu'elle converge ce qui veut dire que la série converge.
- X Réciproquement, si la série converge, alors pour tout n, $f(n+1) \le f(1) + \sum_{k=1}^{+\infty} f'(k)$ et la suite (f(n)) est bien bornée.

Exercice 5.20.

- 1. À l'aide d'une comparaison avec une intégrale, donner un équivalent de $S_n = \sum_{k=1}^n \ln^2 k$.
- 2. En déduire la nature de la série de terme général $u_n = \frac{1}{S_n}$.

Solution.

1. Ne pas hésiter à commencer par faire un dessin ici ... $x \mapsto \ln^2 x$ est croissante sur $[1, +\infty[$ et à valeurs positives. Pour tout $k \ge 1$ on donc

$$\int_{k}^{k+1} \ln^2 k \, \mathrm{d}x \le \int_{k}^{k+1} \ln^2 x \, \mathrm{d}x \le \int_{k}^{k+1} \ln^2 (k+1) \, \mathrm{d}x \iff \ln^2 k \le \int_{k}^{k+1} \ln^2 x \, \mathrm{d}x \le \ln^2 (k+1).$$

En sommant ces inégalités pour k allant de 1 à n il vient

$$\sum_{k=1}^{n} \ln^2 k \le \int_1^{n+1} \ln^2 x \, \mathrm{d}x \le \sum_{k=1}^{n} \ln^2 (k+1) \iff \sum_{k=1}^{n} \ln^2 k \le \int_1^{n+1} \ln^2 x \, \mathrm{d}x \le \sum_{k=2}^{n+1} \ln^2 (k) = \sum_{k=1}^{n+1} \ln^2 (k).$$

On en déduit alors (en changeant n en n-1 dans l'inégalité de droite):

$$\int_{1}^{n} \ln^{2} x dx \le \sum_{k=1}^{n} \ln^{2} k \le \int_{1}^{n+1} \ln^{2} x dx.$$

En intègrant par parties (on pose u'(x) = 1 et $v(x) = \ln^2 x$ donc u et v dont bien de clase \mathscr{C}^1) on obtient

$$n \ln^2 n - 2n \ln n + 2n - 2 \le \sum_{k=1}^n \ln^2 k \le (n+1) \ln^2 (n+1) - 2(n+1) \ln (n+1) + 2n.$$

Les deux membres extrèmes de l'encadrement sont tous deux équivalents à $n \ln^2 n$, ce dont on en tire $S_n \sim n \ln^2 n$.

2. On en déduit $u_n \sim \frac{1}{n \ln^2 n}$ (il s'agit d'un exemple d'une série de Bertrand), dont on montre la convergence par le théorème de comparaison avec une intégrale (encore!): $\frac{1}{x \ln^2 x}$ est positive et décroissante vers 0, donc la série est de même nature que l'intégrale $\int_2^{+\infty} \frac{\mathrm{d}x}{x \ln^2 x} = \left[-\frac{1}{\ln x}\right]_2^{+\infty} = \frac{1}{\ln 2}$ et ainsi la série converge.

Exercice 5.21.

On considère la suite (u_n) définie par $u_{n+1} = \frac{e^{-u_n}}{n+1}$.

- 1. Montrer que (u_n) converge et donner sa limite.
- **2**. Donner la nature des séries $\sum u_n$ et $\sum \left(u_n \frac{1}{n}\right)$.

Solution.

- 1. Par une récurrence immédiate, on obtient, pour $n \ge 1, u_n \ge 0$. Il suit qu'on a, pour $n \ge 2, 0 \le u_n \le \frac{1}{n}$. Par encadrement, (u_n) converge vers 0.
- 2. (u_n) converge vers 0, donc (e^{-u_n}) converge vers 1, donc $u_n \underset{+\infty}{\sim} \frac{1}{n} > 0$. Par théorème d'équivalence des séries à termes positifs, $\sum u_n$ diverge.

On a de plus $u_{n-1} \underset{+\infty}{\sim} \frac{1}{n}$, donc $u_{n-1} \underset{n \to +\infty}{=} \frac{1}{n} + o\left(\frac{1}{n}\right)$.

On en tire, en développant l'exponentielle,

$$e^{-u_{n-1}} = 1 - \frac{1}{n} + o\left(\frac{1}{n}\right);$$

puis

$$u_n = \frac{e^{-u_{n-1}}}{n} \underset{n \to +\infty}{=} \frac{1}{n} - \frac{1}{n^2} + o\left(\frac{1}{n^2}\right).$$

Ainsi $u_n - \frac{1}{n} \underset{+\infty}{\sim} -\frac{1}{n^2} < 0$, donc $\sum \left(u_n - \frac{1}{n}\right)$ converge.

Exercice 5.22.

Séries de Bertrand

Soient $\alpha, \beta > 0$. Montrer que

$$\sum \frac{1}{n^\alpha \ln^\beta(n)} \text{ converge } \iff \alpha > 1 \text{ ou } (\alpha = 1 \text{ et } \beta > 1) \,.$$

Solution.

- $m{\mathcal{X}}$ Observons déjà que, si $\alpha < 1$ alors $\frac{1}{n^{\alpha}} = o\left(\frac{1}{n^{\alpha} \ln^{\beta}(n)}\right)$ et comme $\sum \frac{1}{n^{\alpha}}$ diverge, il en est de même pour $\sum \frac{1}{n^{\alpha} \ln^{\beta}(n)}$.
- $\mathbf{X} \text{ Si } \alpha > 1, \text{ en prenant } \gamma \in]1, \alpha[\text{ on a : } \frac{1}{n^{\alpha} \ln^{\beta}(n)} = o\left(\frac{1}{n^{\gamma}}\right) \text{ et donc } \sum \frac{1}{n^{\alpha}} \text{ converge par comparaison.}$

 X Reste à traiter le cas $\alpha = 1$. C'est une comparaison série/intégrale. La fonction $t \mapsto \frac{1}{t \ln^{\beta}(t)}$ est décroissante sur \mathbb{R}_{+}^{*} . On peut écrire, pour $N \geq 2$,

$$\int_{2}^{N+1} \frac{\mathrm{d}t}{t \ln^{\beta}(t)} \le \sum_{n=2}^{N} \frac{1}{n \ln^{\beta}(n)} \le \frac{1}{2 \ln^{\beta}(2)} + \int_{2}^{N} \frac{\mathrm{d}t}{t \ln^{\beta}(t)}.$$

Le cas $\beta = 1$ se calcule séparément.

- Si $\beta = 1$, alors $\int_2^N \frac{\mathrm{d}t}{t \ln(t)} = \ln(\ln(N) \ln(\ln(2))) \to +\infty$. Ainsi, la série diverge par comparaison.
- Si $\beta \neq 1$, alors

$$\frac{1}{1-\beta} \left(\frac{1}{\ln^{\beta-1}(N+1)} - \frac{1}{\ln^{\beta-1}(2)} \right) \leq \sum_{n=2}^{N} \frac{1}{n \ln^{\beta}(n)} \leq 2 \ln^{\beta}(2) + \frac{1}{1-\beta} \left(\frac{1}{\ln^{\beta-1}(N)} - \frac{1}{\ln^{\beta-1}(2)} \right).$$

Si $\beta < 1$ le membre de gauche tend vers $+\infty$ donc par comparaison la série diverge.

Si $\beta > 1$ le membre de droite a une limite finie, donc la suite des sommes partielles est bornée et comme il s'agit d'une série à termes positifs, le théorème de convergence monotone permet d'affirmer que la série converge.

Exercice 5.23. Oral Math II 2024

- 1. Montrer que la série $\sum \frac{1}{k^2-1}$ converge.
- 2. Décomposer en éléments simple $\frac{1}{k^2-1}$.
- 3. En déduire la valeur de la somme $\sum_{k=2}^{+\infty} \frac{1}{k^2 1}.$
- 4. Convergence et somme de la série $\sum_{k=1}^{n-2} \frac{\lfloor \sqrt{k+1} \rfloor \lfloor \sqrt{k} \rfloor}{k}.$

Solution.

- 1. Sans difficulté : $\frac{1}{k^2-1} \sim \frac{1}{k^2} > 0$. Il suit que $\sum \frac{1}{k^2-1}$ converge par critère de comparaison (avec une série de Riemann convergente) pour les séries à termes positifs .
- **2**. On a déjà rencontré ce quotient... on trouve que, pour $k \geq 2$

$$\frac{1}{k^2-1} = \frac{1}{(k-1)(k+1)} = \frac{1}{2} \left[\frac{1}{k-1} - \frac{1}{k+1} \right].$$

3. La décomposition précédente permet de faire apparaître un télescopage. Soit $N \geq 2$. On a

$$S_N = \sum_{k=2}^N \frac{1}{k^2 - 1} = \frac{1}{2} \sum_{k=2}^N \left[\frac{1}{k - 1} - \frac{1}{k} \right] + \frac{1}{2} \sum_{k=2}^N \left[\frac{1}{k} - \frac{1}{k + 1} \right] = \frac{1}{2} \left[1 - \frac{1}{N} \right] + \frac{1}{2} \left[\frac{1}{2} - \frac{1}{N + 1} \right] \xrightarrow[N \to +\infty]{} \frac{3}{4}.$$

4. On se doute qu'il y a un lien avec la question précédente. Calculons les premiers termes du terme général. On pose, pour $k \in \mathbb{N}^*$,

$$a_k = \frac{\lfloor \sqrt{k+1} \rfloor - \lfloor \sqrt{k} \rfloor}{k}.$$

Le calcul donne

$$a_1 = 0$$
, $a_2 = 0$, $a_3 = \frac{1}{3}$, $u_4 = 0$, $u_5 = 0$, $u_6 = 0$, $u_7 = 0$, $u_8 = \frac{1}{8}$,...

Ainsi, les termes en dehors de ceux qui précèdent un carré $(3=2^2-1,\ 8=3^3-1)$ semblent être nuls. En effet, si $(k-1)^2 \le j \le k^2-2$, on a $(k-1)^2+1 \le j+1 \le k^2-1$ et donc

$$k-1 < \sqrt{(k-1)^2 + 1} \le \sqrt{j+1} \le \sqrt{k^2 - 1} < k, \qquad k-1 \le \sqrt{j} \le \sqrt{(k^2 - 2)} < k$$

ainsi $a_j = 0$. Par contre, si $j = k^2 - 1$, alors $\sqrt{j+1} = k$ alors que $k-1 \le \sqrt{j} < k$ ainsi

$$a_{k^2-1} = \frac{k - (k-1)}{k^2 - 1} = \frac{1}{k^2 - 1}.$$

Il suit qu'en sommant par paquets, on a

$$\sum_{j=0}^{+\infty} a_j = \sum_{k=1}^{+\infty} a_{k^2-1} = \sum_{k=1}^{+\infty} \frac{1}{k^2 - 1} = \frac{3}{4}.$$

Exercice 5.24. Oral Math II 2025

Soit (u_n) définie par $u_0 = 2$ et $\forall n \in \mathbb{N}, u_{n+1} = 1 + \prod_{k=1}^{n} u_k$.

- 1. Montrer que $\forall n \in \mathbb{N}, u_{n+1} = (u_n 1)u_n + 1$ et $\frac{u_n 1}{u_{n+1} 1} = \frac{1}{u_n 1} \frac{1}{u_{n+1} 1}$.
- 2. Montrer la convergence de la série $\sum \frac{1}{u_n}$ et calculer sa somme.
- 3. Montrer la convergence de la suite de terme général $v_n = \frac{\ln(u_n)}{2^n}$ et calculer sa limite.

Solution.

1. Soit $n \in \mathbb{N}$. Il est clair que $u_{n+1} - 1 = \prod_{k=0}^{n} u_k = u_n \prod_{k=0}^{n-1} u_k = u_n (u_n - 1)$. Une récurrence immédiate permet de voir que $u_n \ge 2$ pour tout $n \in \mathbb{N}$. Ainsi, $u_n - 1 \ne 0$. La relation précédente se

réécrit

$$\frac{u_n(u_n-1)}{u_{n+1}-1} = 1 \iff \frac{u_n-1}{u_{n+1}-1} = \frac{1}{u_n}$$

Par ailleurs,

$$\frac{1}{u_n-1}-\frac{1}{u_{n+1}-1}=\frac{1}{u_n-1}-\frac{1}{(u_n-1)u_n}=\frac{1}{u_n-1}\left(1-\frac{1}{u_n}\right)=\frac{1}{u_n-1}\times\frac{u_n-1}{u_n}=\frac{1}{u_n}.$$

$$\sum_{n=0}^{N} \frac{1}{u_n} = \sum_{n=0}^{N} \left[\frac{1}{u_n - 1} - \frac{1}{u_{n+1} - 1} \right] = \frac{1}{u_0 - 1} - \frac{1}{u_{N+1} - 1}.$$

On peut en fait montrer par récurrence que $u_n \ge 2^n + 1$. En effet, $u_0 = 2 \ge 1 + 1$, puis, si on suppose, pour $n \in \mathbb{N}^*$ arbitraire, que $u_n \ge 2^n + 1$, alors $u_{n+1} = u_n(u_n - 1) + 1 \ge 1 + (2^n + 1)(2^n) \ge 2^{n+1} + 1$ car $2^n + 1 \ge 2$. Alors, par comparaison $u_n \to +\infty$. Et $1/(u_{N+1}-1) \to 0$. Il suit que la série considérée converge et que

$$\sum_{n=0}^{+\infty} \frac{1}{u_n} = 1.$$

3. Par télescopage

$$\frac{\ln(u_n)}{2^n} = \ln(u_0) + \sum_{k=0}^{n-1} \left[\frac{\ln(u_{k+1})}{2^{k+1}} - \frac{\ln(u_k)}{2^k} \right]$$

$$= \ln(2) + \sum_{k=0}^{n-1} \frac{1}{2^{k+1}} \ln\left(\frac{u_{k+1}}{u_k^2}\right) = \ln(2) + \sum_{k=0}^{n-1} \frac{1}{2^{k+1}} \ln\left(\frac{1 + u_k(u_k - 1)}{u_k^2}\right)$$

$$= \ln(2) + \sum_{k=0}^{n-1} \frac{1}{2^{k+1}} \ln\left(1 - \frac{1}{u_k} + \frac{1}{u_k^2}\right),$$

ce qui permet de voir que la suite converge mais pas encore de déterminer la limite... On peut montrer que cette limite est positive est inférieur à ln(2).

Je concède pour l'instant ne pas trouver comment déterminer explicitement la limite. Soit l'énoncé est mal rapporté ou soit plus probablement, quelque chose m'échappe.

Si quelqu'un trouve, je prends!

Série de fonctions, Oral Math II 2024

Exercice 5.25.

- 1. Étudier la convergence de la série $\sum \frac{1}{1+(nx)^2}$, où $x \in \mathbb{R}^*$.
- **2.** On pose $h(x) = \sum_{n=0}^{+\infty} \frac{1}{1 + (nx)^2}, x \in \mathbb{R}^*.$
 - a. Montrer que h est paire puis étudier ses variations.
 - **b**. Déterminer la limite de h en $+\infty$.
 - c. Par une comparaison série-intégrale, déterminer un équivalent de h(x) lorsque $x \to 0^+$.

Solution

1. Soit $x \in \mathbb{R}^*$ fixé. Comme $\frac{1}{1+(nx)^2} \sim \frac{1}{x^2} \times \frac{1}{n^2}$, une comparaison à une série de Riemann assure la convergence de la série et donc h(x) est bien défini. Il est clair que h(-x) = h(x) donc la fonction est paire. Soient x, y deux réels tels que 0 < x < y. Alors, pour tout $n \in \mathbb{N}$,

$$\frac{1}{1+x^2n^2} \le \frac{1}{1+y^2n^2}$$

puis, pour $N \in \mathbb{N}$,

$$\sum_{n=0}^{N} \frac{1}{1+x^2n^2} \ge \sum_{n=0}^{N} \frac{1}{1+y^2n^2}.$$

Par passage à la limite, on a $h(x) \ge h(y)$. Donc h est décroissante sur \mathbb{R}_+^* . Par parité, h est croissante sur \mathbb{R}_-^* .

2. La fonction h étant décroissante sur \mathbb{R}_+^* et minorée par 1, on sait que h admet une limite finie lorsque $x \to +\infty$. Soit x > 0 fixé. On a, pour tout $N \in \mathbb{N}$,

$$1 \le \sum_{n=0}^{N} \frac{1}{1 + x^{2}n^{2}} \le 1 + \sum_{n=1}^{N} \frac{1}{x^{2}n^{2}} = 1 + \frac{1}{x^{2}} \sum_{n=1}^{N} \frac{1}{n^{2}}$$

Par théorème des gendarmes, $h(x) \to 1$ lorsque $x \to +\infty$.

Remarque. On pouvait aussi faire une comparaison série/intégrale dès cette question, par décroissance de la fonction $f_x: t \mapsto \frac{1}{1+x^2t^2}$ sur \mathbb{R}_+ ,

$$1 \leq \sum_{n=0}^{N} \frac{1}{1+x^2n^2} \leq 1 + \sum_{n=1}^{N} \int_{n-1}^{n} \frac{1}{1+x^2t^2} \mathrm{d}t = 1 + \int_{0}^{N} \frac{\mathrm{d}t}{1+(xt)^2} = 1 + \left[\frac{\arctan(xt)}{x} \right]_{0}^{N} = 1 + \frac{\arctan(Nx)}{x}.$$

3. On se sert de la remarque précédente de toute façon dans cette question. Pour x>0 fixé et $N\in\mathbb{N}$.

$$\int_0^{N+1} \frac{\mathrm{d}t}{1 + x^2 t^2} \le \sum_{n=0}^N \frac{1}{1 + x^2 n^2} \le 1 + \frac{\arctan(Nx)}{x}$$

ou encore

$$\frac{\arctan((N+1)x)}{x} \le \sum_{n=0}^{N} \frac{1}{1+x^2n^2} \le 1 + \frac{\arctan(Nx)}{x}.$$

On passe à la limite en $N \to \pm \infty$

$$\frac{\pi}{2x} \le h(x) \le 1 + \frac{\pi}{2x}.$$

On a donc

$$h(x) \sim \frac{\pi}{2x}, \qquad x \to 0^+.$$

Exercice 5.26.

Règle de Raabe-Duhamel

Soit (u_n) une suite à termes positifs telle qu'il existe $a \in \mathbb{R}$ vérifiant

$$\frac{u_{n+1}}{u_n} = 1 - \frac{a}{n} + o\left(\frac{1}{n}\right).$$

1. On suppose a > 1. Soit $b \in]1, a[$ et posons $v_n = \frac{1}{n^b}$

Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que :

$$\forall n \ge n_0, \ \frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}.$$

En déduire que $\sum u_n$ converge si a > 1.

- **2**. Démontrer que $\sum u_n$ diverge si a < 1.
- 3. En utilisant les séries de Bertrand, montrer que le cas a=1 est douteux.

Solution.

1. Soit
$$b \in]1, a[$$
. On a $\frac{v_{n+1}}{v_n} = \left(1 + \frac{1}{n}\right)^{-b} = 1 - \frac{b}{n} + o\left(\frac{1}{n}\right)$, lorsque $n \to +\infty$. Il suit que $\frac{u_{n+1}}{u_n} - \frac{v_{n+1}}{v_n} = -\frac{(a-b)}{n} + o\left(\frac{1}{n}\right)$,

ce qui est négatif pour n grand, car a-b>0. D'où le résultat.

Il découle de cette inégalité que la suite $\left(\frac{u_n}{v_n}\right)$ est décroissante à partir d'un certain rang. Celle-ci étant minorée par 0 (l'hypothèse que (u_n) permet de voir que les termes sont positifs à partir d'un certain rang au moins), elle est convergente, donc bornée. On peut donc écrire $u_n = O(u_n) = O\left(\frac{1}{n^b}\right)$ et effectuer une comparaison à une série de Riemann convergente. On a le résultat voulu.

2. On s'inspire de l'idée précédente. On montre que cette fois, à partir d'un certain rang $\frac{u_{n+1}}{u_n} \ge \frac{v_{n+1}}{v_n}$ avec $v_n = \frac{1}{n^b}$ mais cette fois a < b < 1. Il suit, qu'à partir d'un certain rang n_1 ,

$$u_n \ge \left(\frac{u_{n_1}}{v_{n_1}}\right) v_n$$

or $\sum v_n$ diverge (Riemann). Donc $\sum a_n$ diverge.

3. Prenons $u_n = \frac{1}{n \ln(n)}$. On peut écrire

$$\frac{u_{n+1}}{u_n} = \left(1 - \frac{1}{n} + o\left(\frac{1}{n}\right)\right) \left(1 - \frac{1}{n\ln(n)} + o\left(\frac{1}{n\ln(n)}\right)\right) = 1 - \frac{1}{n} + o\left(\frac{1}{n}\right),$$

on est donc dans le cas où a=1 et on sait que la série diverge (c'est une comparaison série/intégrale). En prenant en revanche $u_n=\frac{1}{n\ln^2(n)}$, on a

$$\frac{u_{n+1}}{u_n} = \left(1 - \frac{1}{n} + o\left(\frac{1}{n}\right)\right) \left(1 - \frac{1}{n\ln(n)} + o\left(\frac{1}{n\ln(n)}\right)\right)^2 = 1 - \frac{1}{n} + o\left(\frac{1}{n}\right),$$

et une fois de plus a=1 mais cette fois la série converge. On ne peut donc rien conclure lorsque a=1.

Exercice 5.27.

Un cas limite

1. Soit f la fonction définie sur $]-1,+\infty[$ par $f(t)=\ln(1+t)-t.$ Expliciter le développement limité à l'ordre 2 en 0 de f. En déduire la nature de la série $\sum f(1/n)$.

On considère un nombre réel a > 0 et une suite à termes strictement positifs $(u_n)_{n \ge 1}$. On introduit alors les suites (w_n) et (ℓ_n) définies, pour tout $n \in \mathbb{N}^*$, par

$$w_n = \frac{u_{n+1}}{u_n} - 1 + \frac{a}{n}, \qquad \ell_n = \ln(n^a u_n).$$

On **suppose** que la série de terme général w_n est absolument convergente.

2. Montrer la convergence des séries $\sum_{n\geq 1} w_n^2$ et $\sum_{n\geq 1} \frac{w_n}{n}$.

Chapitre 5.

3. Vérifier que

$$\ell_{n+1} - \ell_n = f\left(w_n - \frac{a}{n}\right) + w_n + af\left(\frac{1}{n}\right).$$

4. Préciser

$$\lim_{n \to +\infty} w_n - \frac{a}{n}.$$

puis la nature de la série $\sum_{n\geq 1} f\left(w_n - \frac{a}{n}\right)$.

- 5. En déduire la nature de la série $\sum_{n\geq 1} (\ell_{n+1} \ell_n)$.
- **6**. Que peut-on en déduire à propos de la suite (ℓ_n) ?
- 7. Conclure qu'il existe une constante A > 0 telle que

$$u_n \underset{n \to +\infty}{\sim} \frac{A}{n^a}.$$

8. Application. On considère la suite (u_n) définie, pour $n \geq 1$ par

$$u_n = \prod_{k=1}^n \frac{2k}{2k+1}.$$

- **a**. Expliciter u_1, u_2, u_3 .
- **b**. Déterminer la nature de la série $\sum u_n$.

Solution.

1. Soit $f: t \mapsto \ln(1+t) - t$. La fonction f est définie et de classe C^2 sur $]-1;+\infty[$. Utilisant un DL en 0 de $t \mapsto \ln(1+t)$, on obtient

$$f(t) = t - \frac{t^2}{2} + o(t^2) - t = -\frac{t^2}{2} + o(t^2).$$

Il suit que

$$f(t) \underset{t \to 0}{\sim} -\frac{t^2}{2}.$$

Soit $n \in \mathbb{N}^*$, $n \to +\infty$. Comme $1/n \to 0$, on a

$$f\left(\frac{1}{n}\right) \sim -\frac{1}{2n^2}.$$

Donc

$$-f\left(\frac{1}{n}\right) \sim \frac{1}{2n^2}.$$

Or, la série de terme général $1/(2n^2)$ est le multiple du terme général d'une série de Riemann convergente donc, par critère d'équivalence la série $\sum -f(1/n)$ converge, puis on en déduit que $\sum f(1/n)$ converge.

2. Si la série de terme général $|w_n|$ converge, alors son terme général tend vers 0 et en particulier, est plus petit que 1 à partir d'un certain rang. Il suit que, toujours à partir de ce rang,

$$0 \le w_n^2 \le |w_n|$$

et par critère de comparaison pour les séries à termes positifs, la série $\sum w_n^2$ converge. De plus, pour $n \ge 1$,

$$0 \le \left| \frac{w_n}{n} \right| \le |w_n|$$

et, encore par critère de comparaison pour les séries à termes positifs, la série $\sum w_n/n$ converge absolument donc converge (simplement).

3. C'est un (simple) calcul à vérifier, en remarquant que ln(t+1) = f(t) + t.

$$\ell_{n+1} - \ell_n = \ln((n+1)^a u_{n+1}) - \ln(n^a u_n)$$

$$= a \ln(n+1) + \ln(u_{n+1}) - a \ln(n) - \ln(u_n) = \ln\left(\frac{u_{n+1}}{u_n}\right) + a \ln\left(\frac{n+1}{n}\right)$$

$$= \ln\left(\frac{u_{n+1}}{u_n} - 1 + 1\right) + a \ln\left(1 + \frac{1}{n}\right)$$

$$= f\left(\frac{u_{n+1}}{u_n} - 1\right) + \frac{u_{n+1}}{u_n} - 1 + a f\left(\frac{1}{n}\right) + \frac{a}{n}$$

$$= f\left(w_n - \frac{a}{n}\right) + w_n + a f\left(\frac{1}{n}\right),$$

ce qu'on voulait.

4. Comme la série $\sum w_n$ est absolument convergente, alors $|w_n|$ tend vers 0 et il en est de même (par application immédiate du théorème des gendarmes) de w_n . Comme a/n tend aussi vers 0, il suit que

$$\lim_{n \to +\infty} w_n - \frac{a}{n} = 0.$$

On peut donc utiliser l'équivalent de f en 0.

$$f\left(w_n - \frac{a}{n}\right) \underset{n \to +\infty}{\sim} -\frac{1}{2}\left(w_n - \frac{a}{n}\right)^2 = -\frac{w_n^2}{2} + a\frac{w_n}{n} - \frac{a^2}{2n^2}.$$

On reconnait la combinaison de termes généraux trois séries convergentes. Par critère d'équivalence (adapté pour les séries à termes négatifs comme ci-dessus), on peut conclure que la série $\sum f(w_n - a/n)$ converge.

- 5. Comme vu précédemment, $(\ell_{n+1} \ell_n)$ est combinaison de trois termes généraux de séries convergentes donc la série $\sum (\ell_{n+1} \ell_n)$ converge.
- 6. C'est le fameux lien entre suite et série "télescopique". On constate que

$$\sum_{k=1}^{n-1} (\ell_{k+1} - \ell_k) = \ell_n - \ell_1 \Longleftrightarrow \ell_n = \ell_1 + \sum_{k=1}^{n-1} (\ell_{k+1} - \ell_k).$$

Ainsi, la suite (ℓ_n) converge. On peut même dire que

$$\lim_{n \to +\infty} \ell_n = \ell_1 + \sum_{n=1}^{+\infty} (\ell_{n+1} - \ell_n) = C.$$

7. On rappelle que $\ell_n = \ln(n^a u_n) \iff u_n = e^{\ell_n}/n^a$. Ainsi, la dernière question donne, en posant $A = \exp(C)$,

$$n^a u_n \xrightarrow[n \to +\infty]{} A \Longleftrightarrow \frac{n^a}{A} \cdot u_n \xrightarrow[n \to +\infty]{} 1,$$

ou encore

$$u_n \underset{n \to +\infty}{\sim} \frac{A}{n^a}$$

8. Application. On considère la suite (u_n) définie, pour $n \geq 1$ par

$$u_n = \prod_{k=1}^n \frac{2k}{2k+1}.$$

a. Par définition

$$u_1 = \frac{2}{3}$$

$$u_2 = \frac{2}{3} \times \frac{4}{5} = \frac{8}{15}$$

$$u_3 = \frac{2}{3} \times \frac{4}{5} \times \frac{6}{7} = \frac{48}{105}$$

b. Comme le suggère le mot *Application*, on va essayer d'appliquer le critère de convergence démontré précédemment. Commençons par calculer

$$\frac{u_{n+1}}{u_n} = \prod_{k=1}^{n+1} \frac{2k}{2k+1} \times \prod_{k=1}^{n} \frac{2k+1}{2k}$$
$$= \frac{2n+2}{2n+3}$$
$$= 1 - \frac{1}{2n+3}$$

En particulier, on voit qu'en posant

$$w_n = \frac{u_{n+1}}{u_n} - 1 + \frac{1}{2n} = \frac{1}{2n} - \frac{1}{2n+3} = \frac{3}{2n(2n+3)} \underset{n \to +\infty}{\sim} \frac{3}{4n^2}$$

on a définit une série $\sum w_n$ (absolument) convergente. En appliquant la conclusion de la Question 7. - avec a=1/2 donc - il suit qu'il existe une constante A>0 telle que

$$u_n \underset{n \to +\infty}{\sim} \frac{A}{\sqrt{n}}.$$

Il suit, par critère d'équivalence, que la série $\sum u_n$ diverge.

Exercice 5.28. Constante d'Euler

Soient $m \in \mathbb{N}$ un entier et $f: [m, +\infty[\to \mathbb{R}_+$ une fonction continue et décroissante.

1. a. Montrer que la série
$$\sum_{n>m} \left(\int_{n-1}^n f(t) dt - f(n) \right)$$
 converge.

b. En déduire l'existence d'une constante κ telle que $\sum_{j=m}^{n} f(j) = \int_{m}^{n} f(t)dt + \kappa + o(1)$.

On note, pour tout $n \in \mathbb{N}^*$

$$H_n = \sum_{k=1}^n \frac{1}{k}, \quad J_n = \sum_{k=2}^n \frac{\ln(k)}{k} \quad \text{et} \quad K_n = \sum_{k=2}^n \frac{(-1)^k \ln(k)}{k}$$

- **2**. Montrer qu'il existe une constante γ appelée constante d'Euler telle que $\lim_{n \to +\infty} (H_n \ln(n)) = \gamma$.
- **3**. Déterminer la nature de $(J_n)_{n\geq 2}$ et $(K_n)_{n\geq 2}$.
- **4. a.** Montrer que, pour tout $n \geq 2$,

$$K_{2n} = \ln(2)H_n + J_n - J_{2n}.$$

- **b.** Exprimer la valeur de $\sum_{k=2}^{+\infty} \frac{(-1)^k \ln(k)}{k}$ en fonction de γ .
- 5. Calculer $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}.$

Solution

1. a. On fait apparaître une somme télescopique comme majorant ; comme f est décroissante, on a $\left(\int_{n-1}^{n} f(t) dt - f(n)\right) \le f(n-1) - f(n)$ donc

$$\sum_{k=m+1}^{n} \left(\int_{k-1}^{k} f(t) dt - f(k) \right) \le \sum_{k=m+1}^{n} \left(f(k-1) - f(k) \right) = f(m) - f(n) \le f(m).$$

La suite des sommes partielles est croissante (car à termes positifs) et majorée : elle converge.

b. Notons ℓ la somme de la série précedente. On a alors

$$\sum_{k=m}^{n} f(k) = f(m) + \sum_{k=m+1}^{n} \left(f(k) - \int_{k-1}^{k} f(t) dt \right) + \int_{m}^{n} f(t) dt$$

$$= \int_{m}^{n} f(t) dt + f(m) - \ell + \sum_{k=n+1}^{+\infty} \left(f(k) - \int_{k-1}^{k} f(t) dt \right) = \int_{m}^{n} f(t) dt + f(m) - \ell + o(1)$$

Il suffit de poser $\kappa = f(m) - \ell$.

- **2.** On utilise la question précédente avec $f: t \mapsto 1/t$ et m=1. On a immédiatement $H_n = \ln(n) + \gamma + o(1)$.
- 3. Le critère spécial des séries alternées affirme que (K_n) est convergente. Par ailleurs, (J_n) est divergente car la Question 1. avec $f: t \mapsto \ln(t)/t$ et m=3 donne

$$J_n = \frac{\ln(2)}{2} + \int_3^n \frac{\ln(t)}{t} dt + \kappa + o(1) = \frac{\ln^2(n)}{2} + \lambda + o(1) \to +\infty$$

donc (J_n) diverge (vers $+\infty$).

4. a. On calcule en séparant termes pairs et impairs

$$K_{2n} = \sum_{k=2}^{2n} \frac{(-1)^k \ln(k)}{k} = \sum_{k=1}^n \frac{\ln(2k)}{2k} - \sum_{k=1}^n \frac{\ln(2k-1)}{2k-1} = 2\sum_{k=1}^n \frac{\ln(2k)}{2k} - \sum_{k=1}^n \frac{\ln(2k)}{2k} - \sum_{k=1}^n \frac{\ln(2k-1)}{2k} = \ln(2)H_n + J_n - J_{2n}$$

b. En combinant les développements asymptotiques précédents

$$K_{2n} = \ln(2)\ln(n) + \ln(2)\gamma + \frac{\ln^2(n)}{2} + \lambda - \frac{\ln^2(2n)}{2} - \lambda + o(1)$$

$$= \ln(2)\ln(n) + \ln(2)\gamma + \frac{\ln^2(n)}{2} - \frac{\ln^2(2)}{2} - \ln(2)\ln(n) - \frac{\ln^2(n)}{2} + o(1) \underset{n \to +\infty}{\longrightarrow} \ln(2)\gamma - \frac{\ln^2(2)}{2},$$

qui est la valeur cherchée (car (K_n) étant convergente, (K_{2n}) converge vers la même limite).

5. Notons $A_n = \sum_{k=1}^n \frac{(-1)^k}{k}$. Le CSSA affirme que (A_n) converge. On cherche sa limite qu'on obtient par la même méthode de découpage des termes

$$A_{2n} = H_n - H_{2n} = \ln(n) + \gamma + o(1) - \ln(2n) - \gamma = -\ln(2) + o(1) \xrightarrow{n \to +\infty} -\ln(2)$$

Exercice 5.29. Critère d'Abel

Soient (a_n) et (b_n) deux suites. On note $B_n = \sum_{k=1}^n b_k$ et $S_n = \sum_{k=1}^n a_k b_k$.

1. Montrer, en remarquant que, pour $k \geq 2$, on a $B_k - B_{k-1} = b_k$, que, pour tout $n \in \mathbb{N}^*$, on a

$$S_n = a_{n+1}B_n - \sum_{k=1}^n B_k(a_{k+1} - a_k).$$

2. Démontrer alors le résultat suivant :

héorème. Critère d'Abel (1802-1829)

Si la suite (a_n) tend vers 0, si la suite (B_n) est bornée et si la série $\sum (a_k - a_{k+1})$ converge absolument, alors la série $\sum a_k b_k$ converge.

On considère la série $\sum (-1)^n \sqrt{n} \ln \left(\frac{n+2}{n} \right)$.

3. Montrer que

$$a_n \stackrel{\text{def.}}{=} \sqrt{n} \ln \left(\frac{n+2}{n} \right) \sim \frac{2}{\sqrt{n}}, \quad n \to +\infty$$

- 4. En déduire que la série n'est pas absolument convergente.
- 5. En écrivant $\sqrt{n+1} = \sqrt{n}\sqrt{1+\frac{1}{n}}$, montrer que

$$a_n - a_{n+1} \sim \frac{1}{n\sqrt{n}}, \quad n \to +\infty.$$

6. Conclure que le critère d'Abel s'applique et que la série est bien convergente.

Solution.

Chapitre 5. 15

1. L'idée principale de cette question est d'observer que

$$b_k = B_k - B_{k-1}, \quad k > 2.$$

et que $b_1 = B_1$. Ainsi,

$$S_{n} = \sum_{k=1}^{n} a_{k}b_{k} = a_{1}b_{1} + \sum_{k=2}^{n} a_{k}(B_{k} - B_{k-1})$$

$$= a_{1}B_{1} + \sum_{k=2}^{n} a_{k}B_{k} - \sum_{k=2}^{n} a_{k}B_{k-1}$$

$$= \sum_{k=1}^{n} a_{k}B_{k} - \sum_{k=1}^{n-1} a_{k+1}B_{k}$$
 (changement d'indice)
$$= a_{n+1}B_{n} - \sum_{k=1}^{n} B_{k}(a_{k+1} - a_{k}),$$

ce qui est bien la formule attendue.

2. Supposons donc que

X La suite (a_n) tend vers 0;

X la suite (B_n) est bornée;

X la série $\sum (a_{k+1} - a_k)$ converge absolument.

On peut alors déduire que :

X la suite (a_nB_n) converge vers 0. En effet, comme (B_n) est bornée, il existe $M \geq 0$ tel que, pour tout $n \in \mathbb{N}$, $|B_n| \leq M$. Il suit que, pour tout $n \in \mathbb{N}$

$$-Ma_n \le a_n B_n \le Ma_n$$

et par le théorème des gendarmes, a_nB_n tend bien vers 0;

X La série $\sum B_k(a_k-a_{k+1})$ converge (absolument). En effet,

$$|B_k(a_k - a_{k+1})| \le M|a_{k+1} - a_k|$$

et comme par hypothèse la série $\sum (a_k - a_{k+1})$ converge absolument, le critère de comparaison pour les séries à termes positifs permet d'affirmer que la série $\sum B_k(a_k - a_{k+1})$ converge absolument et donc converge.

Ainsi, la somme partielle S_n admet une limite finie, ce qui est la définition d'une série convergente.

On considère la série $\sum (-1)^n \sqrt{n} \ln \left(\frac{n+2}{n} \right)$.

3. On commence par réécrire la quantité dans le log.

$$a_n = \sqrt{n} \ln \left(\frac{n+2}{n} \right)$$

$$= \sqrt{n} \ln \left(1 + \frac{2}{n} \right)$$

$$= \sqrt{n} \left(\frac{2}{n} - \frac{2}{n^2} + o\left(\frac{1}{n^2} \right) \right)$$

$$= \frac{2\sqrt{n}}{n} + o\left(\frac{\sqrt{n}}{n} \right)$$

$$\sim \frac{2}{\sqrt{n}}, \quad n \to +\infty.$$

4. Comme

$$\left| (-1)^n \sqrt{n} \ln \left(\frac{n+2}{n} \right) \right| = a_n \sim \frac{2}{\sqrt{n}}, \quad n \to +\infty,$$

le critère d'équivalence (en comparaison à une série de Riemann divergente) permet d'affirmer que la série ne converge pas absolument.

5. On utilise les DL rappelés ci-dessus.

$$a_{n} - a_{n+1} = \sqrt{n} \ln \left(1 + \frac{2}{n} \right) - \sqrt{n} \sqrt{1 + \frac{1}{n}} \ln \left(1 + \frac{2}{n+1} \right)$$

$$= \sqrt{n} \left(\ln \left(1 + \frac{2}{n} \right) - \sqrt{1 + \frac{1}{n}} \ln \left(1 + \frac{2}{n+1} \right) \right)$$

$$= \sqrt{n} \left(\frac{2}{n} + \frac{2}{n^{2}} + o\left(\frac{1}{n^{2}} \right) - \left(1 + \frac{1}{2n} - \frac{1}{8n^{2}} + o\left(\frac{1}{n^{2}} \right) \right) \left(\frac{2}{(n+1)} - \frac{2}{(n+1)^{2}} + o\left(\frac{1}{n^{2}} \right) \right) \right)$$

$$a_{n} - a_{n+1} = \sqrt{n} \left(\frac{2}{n} - \frac{2}{n^{2}} - \frac{1}{n(n+1)} - \frac{2}{n+1} + \frac{2}{(n+1)^{2}} + o\left(\frac{1}{n^{2}} \right) \right)$$

$$= \sqrt{n} \left(\frac{2}{n(n+1)} - \frac{1}{n(n+1)} + \frac{2n^{2} - 2(n+1)^{2}}{n^{2}(n+1)^{2}} + o\left(\frac{1}{n^{2}} \right) \right)$$

$$= \sqrt{n} \left(\frac{1}{n(n+1)} + \frac{2 - 4n}{n^{2}(n+1)^{2}} + o\left(\frac{1}{n^{2}} \right) \right)$$

$$= \sqrt{n} \left(\frac{1}{n(n+1)} + o\left(\frac{1}{n^{2}} \right) \right)$$

$$\stackrel{\sim}{n \to +\infty} \frac{\sqrt{n}}{n^{2}} = \frac{1}{n\sqrt{n}}$$

- 6. On vérifie que les hypothèses du critères sont bien satisfaites:
 - **X** Comme $a_n \sim 2/\sqrt{n}$, on a bien que $a_n \to 0$;
 - X La suite (B_n) est bornée. En effet

$$B_n = \sum_{k=1}^{n} (-1)^k = \begin{cases} 0, & \text{si } n \text{ est pair} \\ 1, & \text{sinon.} \end{cases}$$

Donc $|B_n| \leq 1$

 $\boldsymbol{\mathsf{X}}$ La série $\sum (a_k - a_{k+1})$ converge absolument. En effet,

$$|a_k - a_{k+1}| = a_k - a_{k+1} \sim \frac{1}{k\sqrt{k}}$$

et par équivalence avec une série de Riemann convergente, on a bien la convergence.

Tous les critères sont satisfaits, la série considérée converge.

Exercice 5.30.

Un calcul de ζ (2) - Extrait Devoir Surveillé N°4, Automne 2024

On pose pour tout entier $n \in \mathbb{N}$,

$$I_n = \int_0^{\pi/2} \cos^{2n} t \, dt, \quad J_n = \int_0^{\pi/2} t^2 \cos^{2n} t \, dt \quad \text{et} \quad Q_n = \frac{J_n}{I_n}.$$

1. Montrer que, pour tout $n \in \mathbb{N}^*$,

$$(2n+2)I_{n+1} = (2n+1)I_n$$
 puis $I_n = n((2n-1)J_{n-1} - 2nJ_n)$.

- **2**. En déduire que $\forall n \in \mathbb{N}^*$, $Q_{n-1} Q_n = \frac{1}{2n^2}$.
- 3. Obtenir que :

$$\forall x \in \left[0, \frac{\pi}{2}\right], \quad x \leqslant \frac{\pi}{2}\sin x.$$

4. Montrer alors que :

$$\forall n \in \mathbb{N}, \quad J_n \leqslant \frac{\pi^2}{4} (I_n - I_{n+1}) = \frac{\pi^2}{4} \frac{I_n}{2n+2}$$

5. Déterminer la valeur de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$

Chapitre 5.

Solution.

1. C'est une intégration par parties classique :

$$I_{n+1} = \int_0^{\pi/2} \cos^{2n}(t) \cos^2(t) dt = I_n - \int_0^{\pi/2} \cos^{2n}(t) \sin^2(t) dt = I_n - \left[\frac{-\cos^{2n+1}(t) \sin(t)}{2n+1} \right]_0^{\pi/2} - \frac{1}{2n+1} I_{n+1}$$

ce qui donne bien $(2n+2)I_{n+1} = (2n+1)I_n$.

Pour l'autre égalité, il s'agit de deux IPP successives :

$$\begin{split} I_n &= \int_0^{\pi/2} \cos^{2n}(t) \cos^2(t) \mathrm{d}t = \left[t \cos^{2n}(t)\right]_0^{\pi/2} + n \int_0^{\pi/2} 2t \sin(t) \cos^{2n-1}(t) \mathrm{d}t \\ &= n \int_0^{\pi/2} 2t \sin(t) \cos^{2n-1}(t) \mathrm{d}t \\ &= n \left(\left[t^2 \sin(t) \cos^{2n-1}(t)\right]_0^{\pi/2} - \int_0^{\pi/2} t^2 \left(\cos^{2n}(t) - (2n-1) \sin^2(t) \cos^{2n-2}(t)\right) \mathrm{d}t \right) \\ &= n \int_0^{\pi/2} t^2 \left(\cos^{2n}(t) - (2n-1) \sin^2(t) \cos^{2n-2}(t)\right) \mathrm{d}t \\ &= n (-J_n + (2n-1)J_{n-1} - (2n-1)J_n) = n((2n-1)J_{n-1} - 2nJ_n). \end{split}$$

2. On pense à justifier que Q_n est bien défini! D'après ce qui précède

$$I_n = \frac{2n-1}{2n}I_{n-1}, \qquad 1 = \frac{I_n}{I_n} = n\left((2n-1)\frac{J_{n-1}}{I_n} - 2nQ_n\right)$$

on remplace I_n pour faire apparaître Q_{n-1} . On a $1 = n(2nQ_{n-1} - 2nQ_n)$ ou encore $1 = 2n^2(Q_{n-1} - Q_n)$ ce qui donne ce qu'on demande.

- 3. La fonction sin est concave sur $[0, \pi/2]$, sa courbe est au-dessus de la corde entre 0 et $\pi/2$ ce qui donne immédiatement l'inégalité demandée.
- 4. Par croissance de l'intégrale, $0 \leqslant J_n \leqslant \int_0^{\pi/2} \frac{\pi^2}{4} \underbrace{\sin^2 t}_{1-\cos^2 t} \cos^{2n} t dt = \frac{\pi^2}{4} (I_n I_{n+1})$ où on a utilisé l'inégalité de convexité

précédente. Or $I_{n+1} = \frac{2n+1}{2n+2}I_n$, donc

$$I_n - I_{n+1} = I_n \left(1 - \frac{2n+1}{2n+2} \right) = \frac{I_n}{2n+2}$$
 puis $J_n \leqslant \frac{\pi^2}{4} \left(I_n - I_{n+1} \right) = \frac{\pi^2}{4} \frac{I_n}{2n+2}$.

5. L'inégalité précédente (en divisant par I_n) donne $Q_n \to 0$ par les gendarmes de Saint-Tropez. De plus, comme $I_0 = \pi/2$ et $J_0 = \int_0^{\pi/2} t^2 dt = \frac{\pi^3}{24}$, on obtient : $Q_0 = \frac{\pi^2}{12}$. Par télescopage, on obtient

$$\sum_{n=1}^{N} \frac{1}{n^2} = \sum_{n=1}^{N} 2(Q_{n-1} - Q_n) = 2(Q_0 - Q_N) \underset{N \to +\infty}{\longrightarrow} 2Q_0 = \frac{\pi^2}{6}.$$