Math PT. 2025 - 2026

Mathématiques - F. Gaunard http://frederic.gaunard.com Lycée Voltaire, Paris 11e.

Déterminant - Éléments de solution

Sélection d'exercices

Exercice 6.6.

Parmi les familles de \mathbb{R}^3 suivantes, indiquez lesquelles sont des bases.

i.
$$B_1 = ((1,1,1), (-1,2,0), (2,-7,-1))$$
:

ii.
$$B_2 = ((1, 2, -1), (1, -1, 2), (2, 1, -1))$$

i.
$$B_1 = ((1,1,1), (-1,2,0), (2,-7,-1));$$

ii. $B_2 = ((1,2,-1), (1,-1,2), (2,1,-1));$
iii. $B_3 = ((-x,1,1), (1,-x,1), (1,1,-x)).$

i. Après calculs on trouve $\det(B_1) = 0$ donc B_1 n'est pas une base.

ii. Après calculs on trouve $\det(B_2) = 6 \neq 0$ donc B_2 est une base.

$$\begin{vmatrix} -x & 1 & 1 \\ 1 & -x & 1 \\ 1 & 1 & -x \end{vmatrix} = \begin{vmatrix} 0 & 1+x & 1-x^2 \\ 0 & -1-x & 1+x \\ 1 & 1 & -x \end{vmatrix} \qquad L_1 \leftarrow L_1 + xL_3 \\ L_2 \leftarrow L_2 - L_3$$
$$= \begin{vmatrix} 1+x & 1-x^2 \\ -(1+x) & 1+x \end{vmatrix} = (1+x)^2 \begin{vmatrix} 1 & 1-x \\ -1 & 1 \end{vmatrix} = (1+x)^2(2-x)$$

Donc B_3 est une base si et seulement si $x \notin \{-1, 2\}$.

Exercice 6.7.

Donner une équation du plan vectoriel de \mathbb{R}^3 engendré par v=(1,1,1) et w=(-1,0,1).

Solution. Soit $u=(x,y,z)\in\mathbb{R}^3$. Une équation de ce plan F s'obtient en écrivant:

$$u \in F \iff u, v, w \text{ colinéaires} \iff \det(u, v, w) = 0 \iff \begin{vmatrix} x & 1 & -1 \\ y & 1 & 0 \\ z & 1 & 1 \end{vmatrix} = 0 \iff x - 2y + z = 0.$$

Exercice 6.8.

Calculer les déterminants suivants (on en donnera une forme factorisée).

Solution.

i. On a

$$\begin{vmatrix} a & b & c \\ b & b & c \\ c & c & c \end{vmatrix} = \begin{vmatrix} a-b & 0 & 0 \\ b-c & b-c & 0 \\ c & c & c \end{vmatrix} \qquad L_1 \leftarrow L_1 - L_2 \\ L_2 \leftarrow L_2 - L_3$$
$$= c(a-b)(b-c).$$

ii. On a

$$\begin{vmatrix} x & a & b \\ a & x & b \\ a & b & x \end{vmatrix} = \begin{vmatrix} x - a & a - x & 0 \\ a & x & b \\ L_1 \leftarrow L_1 - L_2 \\ L_3 \leftarrow L_3 - L_2 \end{vmatrix} = \begin{vmatrix} x - a & a - x & 0 \\ a & x & b \\ 0 & b - x & x - b \end{vmatrix} = (b - x)(a - x) \begin{vmatrix} -1 & 1 & 0 \\ a & x & b \\ 0 & 1 & -1 \end{vmatrix}$$

$$= \begin{vmatrix} -1 & 0 & 0 \\ a & x + a & b \\ 0 & 1 & -1 \end{vmatrix} = -(b - x)(a - x) \begin{vmatrix} x + a & b \\ 1 & -1 \end{vmatrix} \text{ on développe par rapport à } L_1$$

$$= (b - x)(a - x)(x + a + b).$$

iii. On a

$$D = \begin{vmatrix} n! & (n-1)! & (n-2)! \\ (n-1)! & (n-2)! & (n-3)! \\ (n-2)! & (n-3)! & (n-4)! \end{vmatrix}$$

$$= (n-2)!(n-3)!(n-4)! \begin{vmatrix} n(n-1) & (n-1)(n-2) & (n-2)(n-3) \\ (n-1) & (n-2) & (n-3) \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{bmatrix} (n-2)!(n-3)!(n-4)! & 2(n-1) & (n-1)(n-2) & -2(n-2) \\ 1 & (n-2) & -1 \\ 0 & 1 & 0 \end{vmatrix}$$

$$= (n-2)!(n-3)!(n-4)! \begin{vmatrix} 2(n-1) & -2(n-2) \\ 1 & -1 \end{vmatrix}$$
 en développant par rapport à L_3

$$= -2(n-2)!(n-3)!(n-4)!$$

iv. On a

$$\begin{vmatrix} a+b & ab & a^2+b^2 \\ b+c & bc & b^2+c^2 \\ c+a & ca & c^2+a^2 \end{vmatrix} = \begin{vmatrix} a+b & ab & a^2+b^2 \\ L_2\leftarrow L_2-L_1 \\ L_3\leftarrow L_3-L_1 \end{vmatrix} \begin{vmatrix} a+b & ab & a^2+b^2 \\ c-b & a(c-b) & (c-b)(c+b) \end{vmatrix}$$

$$= (c-a)(c-b)\begin{vmatrix} a+b & ab & a^2+b^2 \\ 1 & b & c+a \\ 1 & a & c+b \end{vmatrix}$$

$$= \begin{bmatrix} (c-a)(c-b)(a-b) \end{vmatrix} \begin{vmatrix} a+b & ab & a^2+b^2 \\ 1 & b & c+a \\ 0 & 1 & -1 \end{vmatrix}$$

$$= \begin{bmatrix} (c-a)(c-b)(a-b) \end{vmatrix} \begin{vmatrix} a+b & ab & a^2+b^2 \\ 1 & b & c+a \\ 0 & 1 & -1 \end{vmatrix}$$

$$= -(c-a)(c-b)(a-b)\begin{vmatrix} a+b & ab & a^2+b^2+ab \\ 1 & b & c+a+b \\ 0 & 1 & 0 \end{vmatrix}$$

$$= -(c-a)(c-b)(a-b)\begin{vmatrix} a+b & a^2+b^2+ab \\ 1 & c+a+b \end{vmatrix}$$

$$= -(c-a)(c-b)(a-b)\begin{vmatrix} 0 & -(ab+bc+ac) \\ 1 & c+a+b \end{vmatrix}$$

$$= -(c-a)(c-b)(a-b)(a-b)(a-b)(a-b) + c+a+b \end{vmatrix}$$

$$= -(c-a)(c-b)(a-b)(a-b)(a-b)(a-b)(a-b+bc+ac) .$$

Chapitre 6.

Exercice 6.9.

Calculer les déterminants d'ordre n (sauf iii. qui est d'ordre 2n) suivants.

$$i. \ A_{n} = \begin{vmatrix} a_{1} & a_{2} & \dots & a_{n} \\ a_{1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{2} \\ a_{1} & \dots & a_{1} & a_{1} \end{vmatrix} \quad ii. \ B_{n} = \begin{vmatrix} 0 & 1 & \dots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 0 \end{vmatrix} \quad iii. \ C_{2n} = \begin{vmatrix} a & a & 0 & b \\ a & a & 0 & b \\ \vdots & \ddots & \ddots & \vdots \\ 0 & a & a + b & b & \ddots & \vdots \\ 0 & a & a + b & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & b \\ 0 & \dots & 0 & a & a + b \end{vmatrix} \quad v. \ E_{n} = \begin{vmatrix} a & x & \dots & \dots & x \\ y & z & 0 & \dots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ y & 0 & \dots & 0 & z \end{vmatrix} \quad vi. \ F_{n} = \begin{vmatrix} 1 & \dots & 1 & a \\ \vdots & \ddots & \ddots & 1 \\ 1 & a & \ddots & \vdots \\ a & 1 & \dots & 1 \end{vmatrix}$$

Pour v on pourra calculer E_n pour n = 2, 3, 4 puis conjecturer une formule.

Solution.

i. On a

$$A_{n} = \begin{vmatrix} a_{1} & a_{2} & \dots & a_{n} \\ a_{1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{2} \\ a_{1} & \dots & a_{1} & a_{1} \end{vmatrix} = \begin{vmatrix} a_{1} - a_{2} & a_{2} - a_{3} & \dots & a_{n} \\ 0 & a_{1} - a_{2} & \vdots \\ \vdots & 0 & \ddots \\ 0 & \dots & 0 & a_{1} \end{vmatrix}$$

$$= a_{1}(a_{1} - a_{2})^{n-1}$$

$$\forall j \in [1, n-1], C_{j} \leftarrow C_{j} - C_{j+1}$$

$$= a_{1}(a_{1} - a_{2})^{n-1}$$

ii. On a

$$B_{n} = \begin{vmatrix} 0 & 1 & \dots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 0 \end{vmatrix}$$

$$= \begin{vmatrix} n-1 & 1 & \dots & 1 \\ n-1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ n-1 & \dots & 1 & 0 \end{vmatrix}$$

$$= (n-1) \begin{vmatrix} 1 & 1 & \dots & 1 \\ 1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 0 \end{vmatrix}$$

$$= (n-1) \begin{vmatrix} 1 & 1 & \dots & 1 \\ 1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 0 \end{vmatrix}$$

$$= (n-1) \begin{vmatrix} 1 & 1 & \dots & 1 \\ 0 & -1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & -1 \end{vmatrix}$$

$$= (n-1)(-1)^{n-1} \qquad \text{car la matrice est triangulaire supérieure}$$

iii. En développant d'abord selon la première colonne on obtient:

Puis en développant ces deux déterminants selon la dernière colonne il vient

$$C_{2n} = (-1)^{2n}a^{2} \begin{vmatrix} a & 0 & b \\ & \cdot & & \cdot \\ 0 & \vdots & 0 \\ & \cdot & & \cdot \\ b & 0 & a \end{vmatrix}_{[2n-2]} + (-1)^{2n+1}b^{2} \begin{vmatrix} a & 0 & b \\ & \cdot & & \cdot \\ 0 & \vdots & 0 \\ & \cdot & & \cdot \\ b & 0 & a \end{vmatrix}_{[2n-2]} = (a^{2} - b^{2}) C_{2n-2}.$$

Cela prouve $C_{2n} = (a^2 - b^2) C_{2n-2}$. On en déduit par récurrence $C_{2n} = (a^2 - b^2)^{n-1} C_2 = (a^2 - b^2)^n$.

iv. En développant par rapport à la première colonne il vient:

$$\begin{vmatrix} a+b & b & 0 & \cdots & 0 \\ a & a+b & b & \ddots & \vdots \\ 0 & a & a+b & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & b \\ 0 & \cdots & 0 & a & a+b \end{vmatrix}_{[n]} = (a+b) \begin{vmatrix} a+b & b & 0 \\ a & a+b & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ 0 & \cdots & a & a+b \end{vmatrix}_{[n-1]} - a \begin{vmatrix} b & 0 & \cdots & 0 \\ a & a+b & 0 \\ \vdots & \ddots & \ddots & b \\ 0 & \cdots & a & a+b \end{vmatrix}_{[n-1]}.$$

Puis en développant selon la première ligne le deuxième déterminant:

$$D_{n} = (a+b) D_{n-1} - ab \begin{bmatrix} a+b & b & 0 \\ a & a+b & \ddots & \vdots \\ & \ddots & \ddots & b \\ 0 & \cdots & a & a+b \end{bmatrix}_{[n-2]} = (a+b) D_{n-1} - abD_{n-2}.$$

La suite (D_n) satisfait donc la relation de récurrence linéaire d'ordre deux $D_n = (a+b)D_{n-1} - abD_{n-2}$, et les premiers termes sont $D_1 = a+b$ et $D_2 = a^2 + ab + b^2$.

L'équation caractéristique est $X^2 - (a+b)X + ab$, dont les racines sont a et b.

X Si $a \neq b$ la solution s'écrit $D_n = \lambda a^n + \mu b^n$, et les valeurs initiales permettent de trouver $\lambda = \frac{-a}{b-a}$ et $\mu = \frac{b}{b-a}$, d'où

$$D_n = \frac{b^{n+1} - a^{n+1}}{b - a} = \sum_{k=0}^{n} a^k b^{n-k}.$$

X Si a = b la solution s'écrit $D_n = (\lambda n + \mu) a^n$, et les conditions initiales donnent $\lambda = \mu = 1$, puis $D_n = (n+1) a^n$, qui est ce que l'on obtient si on prend a = b dans la formule

$$D_n = \sum_{k=0}^n a^k b^{n-k}.$$

On en déduit que cette formule est donc valable dans tous les cas.

v. On conjecture $\forall n \geq 2$, $E_n = z^{n-2}(az - (n-1)xy)$ après avoir calculé les premiers termes. On le prouve par récurrence sur n, l'initialisation était faite avant la conjecture.

Chapitre 6. 5

Pour passer du rang n au rang n+1, on développe E_{n+1} par rapport à la dernière colonne, ce qui donne

$$\begin{vmatrix} a & x & \cdots & \cdots & x \\ y & z & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & z & 0 \\ y & 0 & \cdots & 0 & z \end{vmatrix}_{[n+1]} = (-1)^{n+1} x \begin{vmatrix} y & z & 0 & \cdots & 0 \\ y & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & z \\ y & 0 & \cdots & 0 & 0 \end{vmatrix}_{[n]} + z \begin{vmatrix} a & x & \cdots & \cdots & x \\ y & z & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & z & 0 \\ y & 0 & \cdots & 0 & z \end{vmatrix}_{[n]}$$

D'où en développant le premier par rapport à la dernière ligne:

$$E_{n+1} = (-1)^{n+1} xy \begin{vmatrix} z & 0 & \cdots & 0 \\ 0 & \ddots & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & z \end{vmatrix}_{[n-1]} + zE_n$$

Cela prouve $E_{n+1} = (-1)^{n+1}(-1)^n xyz^{n-1} + zE_n$, ce qui, en appliquant l'hypothèse de récurrence donne

$$E_{n+1} = -xyz^{n-1} + z^{n-1}(az - (n-1)xy) = z^{n-1}(az - nxy)$$

d'où le résultat.

vi. On a

Exercice 6.10.

Soit A une matrice carrée d'ordre n, et B la matrice telle que: pour tout $j \in [1, n]$, la j-ème colonne de B est la somme des colonnes de A d'indices différents de j. Exprimer $\det(B)$ en fonction de $\det(A)$.

Solution. Soient A_1, \ldots, A_n les colonnes de A. Les colonnes de B sont alors données par $B_j = \sum_{k \neq j} A_k$. L'opération

$$C_1 \leftarrow \sum_{k=1}^n C_k$$
 donne alors:

$$\det(B) = \det(B_1, \dots, B_n) = \det\left(\sum_{i=1}^n B_i, B_2 \dots, B_n\right)$$

Or $\sum_{i=1}^{n} B_i = (n-1) \sum_{i=1}^{n} A_i$. D'où, en effectuant les opérations $\forall i \in [2, n], \ C_i \leftarrow C_i - C_1$:

$$\det(B) = (n-1) \det \left(\sum_{i=1}^{n} A_i, B_2 \dots, B_n \right)$$

$$= (n-1) \det \left(\sum_{i=1}^{n} A_i, B_2 - \sum_{i=1}^{n} A_i, \dots, B_n - \sum_{i=1}^{n} A_i \right)$$

$$= (n-1) \det \left(\sum_{i=1}^{n} A_i, -A_2 \dots, -A_n \right)$$

$$= (n-1) \det (A_1, -A_2 \dots, -A_n)$$

$$= (-1)^{n-1} (n-1) \det(A)$$

Exercice 6.11.

Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$ telle que $\forall (i,j) \in [1,n]^2$, $a_{ij} \in [0,1[$ et $\forall i \in [1,n]]$, $\sum_{j=1}^n a_{ij} \leqslant 1$. Montrer que $|\det A| < 1$.

Solution. La démonstration se fait par récurrence sur la taille n de la matrice.

- **X** Pour n = 1 on a $A = (a_{11})$ et $|\det(A)| = a_{11} \in [0, 1]$.
- X Soit $n \in \mathbb{N}$, avec $n \geq 2$. Supposons le résultat vrai pour toute matrice convenable d'ordre n-1, et considérons une matrice A d'ordre n vérifiant les hypothèses indiquées. En notant M_{ij} le mineur de a_{ij} et en développant selon la première ligne, on obtient

$$|\det A| = \left| \sum_{j=1}^{n} (-1)^{i+j} a_{1j} M_{1j} \right| \le \sum_{j=1}^{n} a_{1j} |M_{1j}|.$$

Or M_{1j} est le déterminant de la matrice obtenue en supprimant la $1 \`ere$ ligne et la $j \`ere$ colonne de A, cette matrice est d'ordre n-1 et vérifie encore les conditions voulues. On peut donc lui appliquer l'hypothèse de récurrence :

$$\forall i \in [1, n], |M_{1i}| < 1,$$

d'où on tire $|\det A| < \sum_{j=1}^n a_{ij}$, puis $|\det A| < 1$, ce qui établit l'hérédité. D'où le résultat.

Exercice 6.12.

Dans un \mathbb{R} - espace vectoriel de dimension 3, on considère les trois plans d'équations respectives (1-m)x-2y+z=0, 3x-(1+m)y-2z=0 et 3x-2y-(1+m)z=0.

Donner une condition nécessaire et suffisante sur m pour que ces trois plans aient au moins une droite en commun, et préciser alors leur intersection.

Solution. Dire que ces trois plans ont au moins une droite en commun, c'est dire que leur intersection n'est pas réduite à {0}, c'est-à-dire que le système

$$\begin{cases} (1-m)x - 2y + z = 0\\ 3x - (1+m)y - 2z = 0\\ 3x - 2y - (1+m)z = 0 \end{cases}$$

n'est pas de Cramer.

Le déterminant de ce système est

$$\begin{vmatrix} 1-m & -2 & 1\\ 3 & -1-m & -2\\ 3 & -2 & -1-m \end{vmatrix} = m(1-m)(m+2)$$

après calculs. Donc les plans ont au moins une droite en commun si et seulement si m=0 ou m=1 ou m=-2.

- $m{\textit{X}}$ Dans le cas m=0, le système se ramène alors à $\left\{ \begin{array}{l} x=y\\ x=z \end{array} \right.$: l'intersection est alors la droite dirigée par \overrightarrow{u} (1,1,1). $m{\textit{X}}$ Dans le cas m=1, le système se ramène à $\left\{ \begin{array}{l} x=z\\ x=2y \end{array} \right.$: l'intersection est alors la droite dirigée par \overrightarrow{u} (2,1,2).
- $m{\chi}$ Dans le cas m=-2, le système se ramène à $\left\{ \begin{array}{l} y=3x\\ y=z \end{array} \right.$: l'intersection est alors la droite dirigée par $\overrightarrow{u}\left(1,3,3\right)$

Exercice 6.13.

Dans le plan, on considère trois droites D_i d'équations respectives (D_i) : $a_i x + b_i y + c_i = 0$, pour $i \in [1, 3]$.

Montrer que les trois droites sont concourantes ou parallèles si et seulement si $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0.$

Solution. Dire que $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$ c'est dire que le système associé $\begin{cases} a_1x + b_1y + c_1z = 0 \\ a_2x + b_2y + c_2z = 0 \\ a_3x + b_3y + c_3z = 0 \end{cases}$ n'est pas de Cramer.

Or ce système possède déjà la solution nulle (car il est homogène), donc cela revient à dire dire qu'il admet au moins une solution (x_0, y_0, z_0) non nulle.

Comme l'ensemble des solutions d'un système homogène est un sous-espace vectoriel, cela revient à dire qu'il existe soit une solution du type $(x_0, y_0, 0)$ avec $(x_0, y_0) \neq (0, 0)$, soit une solution du type $(x_0, y_0, 1)$ (car si $u = (x_0, y_0, z_0)$ est solution avec $z_0 \neq 0$, on en déduit que $\frac{1}{z_0}u$ l'est également, ce qui permet d'obtenir une dernière coordonnée égale à 1).

X Le premier cas équivaut à dire que pour tout $i \in [1,3]$, on a

$$a_i x_0 + b_i y_0 = 0 \iff \begin{vmatrix} a_i & -y_0 \\ b_i & x_0 \end{vmatrix} = 0 \iff \det((a_i, b_i), (-y_0, x_0)) = 0$$

et donc que le vecteur (a_i, b_i) est colinéaire à $(-y_0, x_0)$, soit que les trois droites sont parallèles.

X Le second cas équivaut à dire que le point de coordonnées (x_0, y_0) est commun aux trois droites car il vérifie les trois équations, soit qu'elles sont concourantes.

Annales de l'oral

Exercice 6.14. **Oral Math I**

Soient a et b deux réels distincts, $n \in \mathbb{N}^*$ et D_n le déterminant de taille n défini par :

$$D_n = \begin{vmatrix} a+b & ab & 0 & \cdots & 0 \\ 1 & a+b & ab & \ddots & \vdots \\ 0 & 1 & a+b & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & ab \\ 0 & \cdots & 0 & 1 & a+b \end{vmatrix}.$$

- **1**. Calculer D_1 et D_2 .
- **2**. Que vaut D_n si a = 0 ou b = 0?
- **3**. On suppose que a et b sont non nuls.
 - a. Donner une relation de récurrence entre D_{n+2}, D_{n+1} et D_n .
 - **b**. En déduire D_n en fonction de n.

Solution.

1. On a

$$D_1 = |a+b| = a+b,$$
 $D_2 = \begin{vmatrix} a+b & ab \\ 1 & a+b \end{vmatrix} = (a+b)^2 - ab = a^2 + 2ab + b^2 - ab = a^2 + ab + b^2.$

2. Si a=0 ou b=0, alors chaque terme ab=0, donc la matrice devient triangulaire avec b sur la diagonale et 1 en dessous .

$$D_n = \begin{vmatrix} a+b & 0 & 0 & \cdots & 0 \\ 1 & a+b & 0 & \ddots & \vdots \\ 0 & 1 & a+b & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & a+b \end{vmatrix}$$

On a immédiatement $D_n = (a+b)^n$.

3. On développe D_n par la première ligne. On a :

$$D_n = (a+b)D_{n-1} - abD_{n-2}.$$

Cette relation de récurrence est valide pour $n \ge 2$, avec :

$$D_1 = a + b$$
, $D_2 = a^2 + ab + b^2$.

On reconnait une suite récurrente linéaire d'ordre 2. Le calcul donne

$$\forall n \in \mathbb{N}, \ D_n = \frac{a^{n+1} - b^{n+1}}{a - b}.$$

Exercice 6.15.

Oral Math II 2019

- 1. Montrer que pour tout $n \in \mathbb{N}$, on a $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.
- 2. Soit $n \in \mathbb{N}$ avec $n \geqslant 3$. Calculer le déterminant de taille $n \times n$ suivant

$$D_n = \begin{vmatrix} 1 & 0 & \cdots & 0 & n-1 \\ 0 & 1 & \ddots & \vdots & n-2 \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & 1 \\ n-1 & n-2 & \cdots & 1 & 1 \end{vmatrix}.$$

Solution.

- 1. C'est une récurrence facile de première année qu'on laisse au soin de la lectrice ou du lecteur.
- 2. On effectue des opérations sur les lignes pour simplifier la dernière ligne. Plus précisément,

$$L_n \leftarrow L_n - \sum_{i=1}^{n-1} (n-i) \cdot L_i$$

Chapitre 6. 9

En effet, notant $L_{n,j}$ le j-ème coefficient de la n-ème ligne, on a

$$L_{n,j} - \sum_{i=1}^{n-1} (n-i) \cdot L_{i,j} = n - j - (n-j) = 0$$

pour $1 \le j \le n - 1$ et, pour j = n,

$$L_{n,n} - \sum_{i=1}^{n-1} (n-i)^2 = 1 - \sum_{i=1}^{n-1} k^2 = 1 - \frac{(n-1)n(2n-1)}{6} = -\frac{(n-1)(n-2)(n+3)}{3} =: u_n.$$

Ainsi, le déterminant à calculer est celui de la matrice triangulaire :

$$\begin{vmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \ddots & \vdots & 0 \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & \cdots & 0 & u_n \end{vmatrix} .$$

Il suit

$$D_n = -\frac{(n-1)(n-2)(n+3)}{3}.$$

Exercice 6.16. Oral Math II 2015

On considère la matrice carrée M_n de taille n avec $2\cos\theta$ sur la diagonale et des 1 de part et d'autre de cette diagonale, puis des 0.

- 1. Écrire la formule donnant le coefficient générique de cette matrice.
- **2**. Montrer que $d_n = \det(M_n)$ vérifie une relation de récurrence linéaire d'ordre 2 .
- 3. En déduire une expression de d_n en fonction de n et de θ .

Solution.

1. Notons $M_n=(M_{i,j}).$ Si $\delta_{i,j}$ désigne le symbole de Kronecker, alors, on peut écrire

$$\forall (i,j) \in [1,n], \qquad M_{i,j} = \cos(2\theta)\delta_{i,j} + \delta_{i-1,j} + \delta_{i+1,j}.$$

2. Soit $n \ge 2$. On développe par rapport à la première colonne puis son re-développe par rapport à la première colonne la matrice de droite.

$$d_{n} = \begin{vmatrix} \cos(2\theta) & 1 & 0 & \cdots & 0 & 0 \\ 1 & \cos(2\theta) & 1 & \ddots & \vdots \\ 0 & 1 & \cos(2\theta) & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 & 0 \\ 0 & & \ddots & 1 & \cos(2\theta) & 1 \\ 0 & & \cdots & 0 & 0 & 1 & \cos(2\theta) \end{vmatrix}$$

$$= \cos(2\theta) \begin{vmatrix} \cos(2\theta) & 1 & \cdots & 0 \\ 1 & \cos(2\theta) & \ddots & \\ 0 & 1 & \ddots & 1 \\ 0 & & 1 & \cos(2\theta) \end{vmatrix} - \begin{vmatrix} 1 & \cos(2\theta) & 1 & \cdots & 0 \\ 0 & 1 & \cos(2\theta) & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 1 & \cos(2\theta) \end{vmatrix}$$

$$= \cos(2\theta) d_{n-1} - d_{n-2},$$

relation de récurrence linéaire d'ordre 2 dont l'équation caractéristique est $x^2 - \cos(2\theta)x + 1 = 0$.

- 3. On résout donc l'équation caractéristique.
 - X Si $\theta \not\equiv 0[\pi]$. On a deux solutions complexes conjuguées $r_1 = e^{i\theta}$ et $r_2 = e^{-i\theta}$. On sait alors qu'il existe deux constantes réelles λ, μ (à déterminer) telles que

$$\forall n \in \mathbb{N}^*, \qquad d_n = \lambda \cos(n\theta) + \mu \sin(n\theta).$$

Comme
$$d_1 = 2\cos(\theta)$$
 et que $d_2 = 4\cos^2(2\theta) - 1 = 2\cos(2\theta) - 1$, on trouve
$$\forall n \in \mathbb{N}^*, \qquad d_n = \cos(n\theta) + \frac{\cos(\theta)}{\sin(\theta)}\sin(n\theta).$$

 $\mathsf{X} \text{ Si } \theta \equiv 0[\pi], \text{ alors } \cos(\theta) = \pm 1 \text{ est racine double de l'équation caractéristique et on sait qu'il existe } \lambda, \mu \in \mathbb{R} \text{ tels que } \forall n \in \mathbb{N}^*, \qquad d_n = (\lambda + \mu n) \cos(\theta)^n.$

Au final, on trouve

$$\forall n \in \mathbb{N}^*, \qquad d_n = (n+1)\cos(\theta)^n = \left\{ \begin{array}{cc} n+1, & \text{si } \theta \equiv 0[2\pi] \\ (n+1)(-1)^n, & \text{si } \theta \equiv \pi[2\pi] \end{array} \right.$$