Mathématiques - F. Gaunard http://frederic.gaunard.com Lycée Voltaire, Paris 11e.

7

Semaine de colles n°7: du 03/11 au 07/11

Programme

X Chapitre 4. Intégralité.

X Chapitre 5. Intégralité.

Questions de cours

Chaque étudiant.e devra traiter une de ces questions - choisie au hasard. Il est donc nécessaire de les avoir toutes préparées au préalable sous peine de passer un très mauvais moment.

1. Déterminer, selon la valeurs de $a \in \mathbb{R}$ et sans calcul, l'image et le noyau de l'endomorphisme canoniquement associé à la matrice

$$A = \begin{pmatrix} 1 & 1 & \dots & \dots & 1 \\ 1 & \ddots & & & \vdots \\ \vdots & & & \ddots & \vdots \\ \vdots & & & 1 & 1 \\ 1 & \dots & \dots & 1 & a \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

2. On considère la série $\sum_{k>2} \frac{1}{k \ln(k)}$.

Déterminer la nature de la série ainsi qu'un équivalent, lorsque $n \to +\infty$ de la somme partielle de rang n.

- 3. Soit $\sum w_n$ une série absolument convergente. Montrer rigoureusement que $\sum w_n^2$ et $\sum \frac{w_n}{n}$ sont des séries convergentes.
- 4. Énoncé du critère de d'Alembert (Théorème 5.16).

Application : Soit $a, b \in \mathbb{R}$. Déterminer, en fonction de a et b la nature de la série $\sum \frac{b^n (n!)^a}{(2n)!}$

5. Énoncé du critère spécial des séries alternées (**Théorème 5.9**). $(-1)^n$

Montrer que la série $\sum \frac{(-1)^n}{n^{\alpha}}$ converge si et seulement si $\alpha > 0$.