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Bonus : Régression linéaire
X

Introduction
Lors d’expériences visant à comparer des données expérimentales à un modèle mathématique, il apparait souvent des
erreurs de mesure ; des points Mi = (xi, yi) qui devraient être alignés (ou suivre un modèle) ne sont pas alignés, mais sont
"presque" sur une même droite D.

On cherche une droite D, d’équation y = ax + b qui passe au plus près des n points du nuage, c’est à dire, en notant
εi = yi − (axi + b) qui minimise la quantité

∆(a, b) =

n∑
i=1

ε2
i =

n∑
i=1

(yi − (axi + b))
2
.

Effectuer une régression linéaire, ou appliquer la méthode des moindres carrés, revient à déterminer les valeurs de a et de b
(et donc l’équation de la droite D) qui minimise ∆.

D

Miyi

axi + b

xi

εi

On propose ci-après de retrouver les formules pour a et pour b avec deux méthodes différentes : une projection orthogonale
et une étude de fonction de deux variables.

On renvoie aux Chapitres 11 & 14 du cours pour les détails théoriques et au TP n°8 pour la pratique.

Méthode 1 : Projection orthogonale
On équipe Rn de sa structure euclidienne canonique. Notons X = (x1, x2, ..., xn) le vecteur de Rn dont les composantes
sont les abscisses des points du nuage, Y = (y1, ..., yn) celui avec les ordonnées des points du nuage et 1 = (1, 1, ..., 1) le
vecteur dont toutes les composantes sont égales à 1.
On observe alors que

∆(a, b) = ‖Y − (aX + b1)‖2.



2 Régression linéaire

Ainsi, en notant F = Vect(X,1) le sous-espace de Rn engendré par X et par 1, le cours permet d’affirmer que le minimum
cherché est atteint à l’aide du projeté orthogonal pF (Y ) de Y sur F :

min
a,b∈R

∆(a, b) = min
a,b∈R

‖Y − (aX + b1)‖2 = min
Z∈F
‖Y − Z‖2 = ‖Y − PF (Y )‖.

On sait alors parfaitement obtenir l’expression du projeté orthogonal (sinon, on ira vite relire le chapitre susmentionné).
Commençons par obtenir une base orthonormée (b.o.n) de F par le procédé de Gram-Schmidt :

1̃ =
1

‖1‖
1 =

1√
n

(1, 1, ..., 1) .

Ensuite on commence par trouver X ′ orthogonal à 1̃, qu’on normalisera ensuite.

X ′ = X − 〈X, 1̃〉1̃ = (x1 − x, ..., xn − x) ,

où on a noté x =
1

n

n∑
i=1

xi la moyenne des xi. On notera de même y la moyenne des yi. Une fois normalisé, on prend donc

X̃ =
1

‖X ′‖
X ′ =

1√√√√ n∑
j=1

(xj − x)2

(x1 − x, ..., xn − x) .

Il suit que :

PF (Y ) = 〈Y |1̃〉1̃ + 〈Y |X̃〉X̃

= (y, ..., y) +

n∑
i=1

yi(xi − x)

n∑
i=1

(xi − x)2

(x1 − x, ..., xn − x)

=

n∑
i=1

yi(xi − x)

n∑
i=1

(xi − x)2

X +

y −


n∑
i=1

yi(xi − x)

n∑
i=1

(xi − x)2

x

 1 = aX + b1.

En notant σ2
x =

1

n

n∑
i=1

(xi − x)2 =
1

n
‖X‖2 − x2 (on pourra réfléchir au choix de cette notation), on conclut que

a =

n∑
i=1

yi(xi − x)

n∑
i=1

(xi − x)2

=

1

n

n∑
i=1

yixi − x · y

1

n

n∑
i=1

(xi − x)2

=

1

n
〈X|Y 〉 − x · y

σ2
x

, b = a · y − x.

Le point de coordonnées (x, y) s’appelle le point moyen du nuage ; on observe que la droite de régression passe par le
point moyen.

Méthode 2 : Point critique d’une fonction de deux variables
On montre dans cette section qu’on retrouve les résultats précédents (la valeur de a et b qui minimise ∆) en montrant que
∆ présente un minimum (local) en (a, b) qui donc un point critique.
On a:

∂∆

∂a
(a, b) = 2

(
n∑

i=1

x2
i

)
a+ 2

(
n∑

i=1

xi

)
b− 1

n∑
i=1

xiyi

∂∆

∂b
(a, b) = 2

(
n∑

i=1

xi

)
a+ 2nb− 2

n∑
i=1

yi
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On trouve le(s) point(s) critique(s) en résolvant un système linéaire, dont on omet les étapes ici

(a, b) point critique de ∆ ⇐⇒ ∇∆(a, b) = 0

⇐⇒



a =

n∑
i=1

yi

n∑
j=1

xj − n
n∑

i=1

xiyi(
n∑

i=1

xi

)2

− n
n∑

i=1

x2
i

=

1

n
〈X|Y 〉 − x · y

σ2
x

b =

n∑
i=1

yi − a
n∑

i=1

xi

n
= y − a · x

Il s’agit des mêmes valeurs que précédemment, on vérifie que c’est un minimum local en explicitant sa matrice hessienne :

H∆(a, b) =


2

n∑
i=1

x2
i 2

n∑
i=1

xi

2

n∑
i=1

xi 2n

 ,

qu’on remarque indépendante de a et b (bien que ce soit aux valeurs de a et b calculées précédemment qu’elle nous intéresse,
et pas ailleurs, car c’est le seul point critique). Par Cauchy-Schwarz,

〈X|1〉2 =

(
n∑

i=1

xi

)2

< ‖X‖2‖1‖2 = n

n∑
i=1

x2
i ,

et donc

det (H∆(a, b)) = 4

n n∑
i=1

x2
i −

(
n∑

i=1

xi

)2
 > 0

on a bien un extremum et

Tr (H∆(a, b)) = 2

(
n+

n∑
i=1

x2
i

)
> 0

c’est donc bien un minimum (local). Easy.

Coefficient de corrélation linéaire

Définition 1.1. Coefficient de corrélation linéaire
On appelle coefficient de corrélation linéaire la quantité ρX,Y souvent simplement notée ρ définie par

ρ =

1

n
〈X|Y 〉 − x · y

‖X‖‖Y ‖
.

Proposition.
Soit ρ le coefficient de corrélation linéaire du couple (X,Y ). Alors
i. ρ ∈ [−1; 1];
ii. ρ = ±1 si et seulement si la régression Y = aX + b est exacte.

+ Il parait alors assez naturel de penser que si ρ est "assez proche" de 1 (en valeur absolue), l’approximation affine
pourrait être pertinente.

Si |ρ| est proche de 1 et qu’on a visualisé une relation linéaire entre les données, on peut confirmer qu’il y a bien
corrélation linéaire entre X et Y .

+ En sciences humaines, en sciences économiques et en sciences physiques, une valeur de |ρ| de l’ordre de 0, 85 est souvent
considérée comme bonne et justifie la pertinence de la régression linéaire.
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Régression linéaire avec transformations
Dans certains cas, on peut appliquer le principe de régression linéaire à un couple obtenu par transformées de Y (ou aussi
de X) et obtenir une relation de la forme

Y ' aϕ(X) + b, ou ϕ(Y ) ' aϕ(X) + b.

Considérons un exemple avec des données correspondant à l’évolution du PIB par habitant (en USD) et du pourcentage de
la population en zone urbaine de la Norvège, de 1960 à 2020 (source: World Bank Data).

1. Recopier et exécuter les instructions suivantes. Commenter le nuage de points.

import pandas as pd
data2=pd.read_csv(’http :// frederic.gaunard.com/2223/tp2_nor.csv’, sep=’;’)

X=data2[’PIB per capita ’]
Y=data2[’Pop urbaine %’]

plt.grid()
plt.plot(X,Y, ’.’) # nuage de points
plt.show()

2. Représenter le nuage de points (ln(X), Y ).
3. Calculer le coefficient de corrélation linéaire de Y en ln(X).
4. Déterminer l’équation de la droite de régression de Y en ln(X).
5. En déduire qu’on peut supposer que la dépendance entre Y et X est de la forme

Y = a ln(X) + b.

6. Représenter le nuage de points précédent sur lequel on fera apparaître la courbe d’équation y = a ln(t) + b.

https://databank.worldbank.org

	1 Bonus : Régression linéaire

