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Bonus : Régression linéaire

Introduction

Lors d’expériences visant & comparer des données expérimentales & un modéle mathématique, il apparait souvent des
erreurs de mesure ; des points M; = (z;,y;) qui devraient étre alignés (ou suivre un modéle) ne sont pas alignés, mais sont
"presque" sur une méme droite D.

On cherche une droite D, d’équation y = ax + b qui passe au plus prés des n points du nuage, c’est a dire, en notant
g; = y; — (ax; + b) qui minimise la quantité

n
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Effectuer une régression linéaire, ou appliquer la méthode des moindres carrés, revient a déterminer les valeurs de a et de b
(et donc I'équation de la droite D) qui minimise A.
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On propose ci-aprés de retrouver les formules pour a et pour b avec deux méthodes différentes : une projection orthogonale
et une étude de fonction de deux variables.

On renvoie aux Chapitres 11 & 14 du cours pour les détails théoriques et au pour la pratique.

Méthode 1: Projection orthogonale

On équipe R™ de sa structure euclidienne canonique. Notons X = (x1, xa, ..., z,) le vecteur de R™ dont les composantes
sont les abscisses des points du nuage, Y = (y1, ..., yn) celui avec les ordonnées des points du nuage et 1 = (1,1,...,1) le
vecteur dont toutes les composantes sont égales a 1.

On observe alors que

Aa,b) = |Y — (aX + b1)||.



2 Régression linéaire

Ainsi, en notant F' = Vect(X, 1) le sous-espace de R™ engendré par X et par 1, le cours permet d’affirmer que le minimum
cherché est atteint a l’aide du projeté orthogonal pp(Y) de Y sur F :

min A(a,b) = min ||Y — (aX +b1)||?> = min |V — Z||? = || — Pr(Y)].
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On sait alors parfaitement obtenir ’expression du projeté orthogonal (sinon, on ira vite relire le chapitre susmentionné).
Commengcons par obtenir une base orthonormée (b.o.n) de F' par le procédé de Gram-Schmidt :
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Ensuite on commence par trouver X’ orthogonal a 1, qu’on normalisera ensuite.

X =X-—(X, D)1= (2 -7 ..,xp —7),

ol on a noté T = — E x; la moyenne des x;. On notera de méme 7 la moyenne des y;. Une fois normalisé, on prend donc
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En notant o2 = — Z(xl —7)? = —|| X||* — Z* (on pourra réfléchir au choix de cette notation), on conclut que
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Le point de coordonnées (Z,7) s’appelle le point moyen du nuage ; on observe que la droite de régression passe par le
point moyen.

Méthode 2 : Point critique d’une fonction de deux variables

On montre dans cette section qu’on retrouve les résultats précédents (la valeur de a et b qui minimise A) en montrant que
A présente un minimum (local) en (a,b) qui donc un point critique.
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On trouve le(s) point(s) critique(s) en résolvant un systéme linéaire, dont on omet les étapes ici

(a,b) point critique de A <= VA(a,b) =0
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Il s’agit des mémes valeurs que précédemment, on vérifie que c’est un minimum local en explicitant sa matrice hessienne :
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qu’on remarque indépendante de a et b (bien que ce soit aux valeurs de a et b calculées précédemment qu’elle nous intéresse,
et pas ailleurs, car c¢’est le seul point critique). Par Cauchy-Schwarz,
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on a bien un extremum et
Tr (Ha(a, b)) = 2 <n + Zﬁ) >0
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c’est donc bien un minimum (local). Easy.

Coefficient de corrélation linéaire

Définition 1.1. Coefficient de corrélation linéaire
On appelle coefficient de corrélation linéaire la quantité px y souvent simplement notée p définie par
1 _
_(X[Y) -7 -7
p= "
XY

Soit p le coefficient de corrélation linéaire du couple (X,Y"). Alors
i. p€[-1;1];
1. p = %1 si et seulement si la régression Y = aX + b est exacte.

1w Il parait alors assez naturel de penser que si p est "assez proche" de 1 (en valeur absolue), 'approximation affine
pourrait étre pertinente.

Si |p| est proche de 1 et qu’on a visualisé une relation linéaire entre les données, on peut confirmer qu’il y a bien
corrélation linéaire entre X et Y.

1= Fn sciences humaines, en sciences économiques et en sciences physiques, une valeur de |p| de l'ordre de 0, 85 est souvent
considérée comme bonne et justifie la pertinence de la régression linéaire.
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Régression linéaire avec transformations

Dans certains cas, on peut appliquer le principe de régression linéaire a un couple obtenu par transformées de Y (ou aussi
de X) et obtenir une relation de la forme

Y ~ap(X)+b, ou oY) ~ap(X)+0.
Considérons un exemple avec des données correspondant & 1’évolution du PIB par habitant (en USD) et du pourcentage de
la population en zone urbaine de la Norvége, de 1960 a 2020 (source: [World Bank Datal).

1. Recopier et exécuter les instructions suivantes. Commenter le nuage de points.

import pandas as pd
data2=pd.read_csv(’http://frederic.gaunard.com/2223/tp2_nor.csv’,

sep=’;"’)
X=data2[’PIB per capita’]
Y=data2[’Pop urbaine %’]

plt.grid ()
plt.plot(X,Y, ?.?)
plt.show ()
2. Représenter le nuage de points (In(X),Y).
3. Calculer le coefficient de corrélation linéaire de Y en In(X).
4. Déterminer I'équation de la droite de régression de Y en In(X).
5. En déduire qu’on peut supposer que la dépendance entre Y et X est de la forme

Y =aln(X)+0.

6. Représenter le nuage de points précédent sur lequel on fera apparaitre la courbe d’équation y = aln(t) + b.
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